首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

2.
Abstract: Synaptosomes prepared from area CA1 of the rat hippocampus were used to determine (a) whether Schaffer collateral-commissural-ipsilateral associational terminals release both aspartate and glutamate in a Ca2+-dependent manner when reuptake of released glutamate is minimal and (b) whether autoreceptor mechanisms described in CA1 or hippocampal slices could reflect direct actions of glutamate receptor ligands on the synaptic terminal. When challenged for 1 min with either 25 m M K+ or 300 µ M 4-aminopyridine, CA1 synaptosomes released both glutamate and aspartate in a Ca2+-dependent manner. The glutamate/aspartate ratio was ∼5:1 in each case. K+-evoked glutamate release was unaffected by ligands active at NMDA or ( RS )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Unlike glutamate release, the release of aspartate was enhanced by NMDA, and this effect was blocked by d -2-amino-5-phosphonovalerate ( d -AP5). Kainate selectively depressed and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) selectively increased the K+-evoked release of aspartate. AMPA enhanced aspartate release, like the antagonist CNQX. When applied in the presence of diazoxide, which blocks the desensitization of AMPA receptors, AMPA and kainate both depressed aspartate release. These findings support the view that Schaffer collateral-commissural-ipsilateral associational terminals release aspartate as well as glutamate and that these two release processes are regulated by different autoreceptor mechanisms.  相似文献   

3.
In previous studies we have shown that the depolarization-induced release of preaccumulated acidic amino acids and newly synthesized glutamate from cerebellar synaptosomal preparations is potentiated by γ-aminobutyric acid (GABA) agonists through a GABAergic presynaptic mechanism. Here we report a systematic analysis of the ionic requirements of the potentiating effect of muscimol on the high K+-evoked release of d-[3H]aspartate. Our studies show that: Ca2+, Na+, and Mg2+ are not required for muscimol to exert its effect; a depolarizing concentration of K+ is a necessary, but not sufficient, condition to observe the presynaptic effect in question; and a minimal Cl- concentration (50–70 mM) is also required. A possible model based on these findings is proposed.  相似文献   

4.
The role of the glutamate dehydrogenase reaction as a pathway of glutamate synthesis was studied by incubating synaptosomes with 5 mM 15NH4Cl and then utilizing gas chromatography-mass spectrometry to measure isotopic enrichment in glutamate and aspartate. The rate of formation of [15N]glutamate and [15N]aspartate from 5 mM 15NH4Cl was approximately 0.2 nmol/min/mg of protein, a value much less than flux through glutaminase (4.8 nmol/min/mg of protein) but greater than flux through glutamine synthetase (0.045 nmol/min/mg of protein). Addition of 1 mM 2-oxoglutarate to the medium did not affect the rate of [15N]glutamate formation. O2 consumption and lactate formation were increased in the presence of 5 mM NH3, whereas the intrasynaptosomal concentrations of glutamate and aspartate were unaffected. Treatment of synaptosomes with veratridine stimulated reductive amination of 2-oxoglutarate during the early time points. The production of ([15N]glutamate + [15N]aspartate) was enhanced about twofold in the presence of 5 mM beta-(+/-)-2-aminobicyclo [2.2.1]heptane-2-carboxylic acid, a known effector of glutamate dehydrogenase. Supplementation of the incubation medium with a mixture of unlabelled amino acids at concentrations similar to those present in the extracellular fluid of the brain had little effect on the intrasynaptosomal [glutamate] and [aspartate]. However, the enrichment in these amino acids was consistently greater in the presence of supplementary amino acids, which appeared to stimulate modestly the reductive amination of 2-oxoglutarate. It is concluded: (a) compared with the phosphate-dependent glutaminase reaction, reductive amination is a relatively minor pathway of synaptosomal glutamate synthesis in both the basal state and during depolarization; (b) NH3 toxicity, at least in synaptosomes, is not referable to energy failure caused by a depletion of 2-oxoglutarate in the glutamate dehydrogenase reaction; and (c) transamination is not a major mechanism of glutamate nitrogen production in nerve endings.  相似文献   

5.
The effect of the glutamate antagonist alpha-amino-4-phosphonobutyrate (APBA) on the release of endogenous amino acids from sensorimotor cortical synaptosomes of rats with a cortical cobalt focus and from non-epileptic rats was studied: (1) The release of endogenous glutamate, aspartate, and gamma-aminobutyric acid (GABA) from synaptosomal preparations of cobalt-induced epileptogenic tissues was increased compared with the release from the contralateral (sensorimotor) region or the sensorimotor cortex of normal animals. The intrasynaptosomal content of these amino acids was reduced in proportion to the amount released. The levels of other amino acids were unaffected or showed much smaller changes. (2) APBA (0.5-1 mM) decreased significantly the spontaneous release of aspartate and glutamate from the epileptic foci without affecting GABA or any other amino acid. (3) APBA produced no effect whatsoever on the release of any amino acid from synaptosomal preparations of nonepileptic focus.  相似文献   

6.
Adenosine, through A2A receptor (A2AR) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A2AR on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K+-evoked [3H]glutamate release and inhibited the K+-evoked [3H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A2AR since for both neurotransmitters, the BDNF action was blocked by the A2AR antagonist SCH 58261 (50 nM). In the presence of the A2AR agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A2AR by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A2AR.  相似文献   

7.
Cerebellar granule cells were cocultured with astrocytes from either cerebral cortex or cerebellum in two different systems. In one system the cells were plated next to each other only sharing the culture medium (separated cocultures) and in the other system the granule cells were plated on top of a preformed layer of astrocytes (sandwich cocultures). Using astrocytes from cerebellum, granule cells developed morphologically and functionally showing a characteristic high activity of the glutamate synthesizing enzyme aspartate aminotransferase (AAT) as well as a high stimulus-coupled transmitter release regardless of the culture system, i.e., granule cells could grow on top of cerebellar astrocytes as well as next to these cells. In the case of cerebral cortex astrocytes it was found that cerebellar granule cells did not develop (11% survival) when seeded on top of these astrocytes. This was indicated by the morphological appearance of the cultures as well as by a negligible difference between the AAT activity in sandwich cocultures and astrocytes cultured alone. On the other hand, granule cells in separated cocultures with cerebral cortex astrocytes exhibited a normal morphology and a high activity of AAT as well as a large stimulus-coupled transmitter release. Cerebellar and cortical astrocytes expressed the astrocyte specific enzyme glutamine synthetase in a glucocorticoid-inducible form regardless of the culture system. The results show that under conditions of direct contact between granule cells and astrocytes, regional specificity exists with regard to neuron-glia contacts. This specificity does not seem to involve soluble factors present in the culture medium because in separated cocultures the cerebellar granule cells developed normally regardless of the regional origin of the astrocytes.  相似文献   

8.
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

9.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

10.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

11.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   

12.
Human cerebral cortical slices preincubated with [3H]GABA, [3H]noradrenaline, or 5-[3H]hydroxytryptamine and superfused with Krebs solution or Mg2+-free Krebs solution were used to investigate the influence of increased D-glucose concentrations on the release of these [3H]-neurotransmitters evoked by high K+ content or NMDA receptor activation, respectively. An increase in level of D-glucose (normal content, 11.1 mM) by 32, 60, and/or 100 mM (a range characteristic for hyperosmolar diabetic coma) increased the [3H]GABA release and inhibited the [3H]noradrenaline release evoked by both methods of stimulation. The K+-induced 5-[3H]hydroxytryptamine release was also inhibited by high D-glucose content. Blockade of GABAB receptors by p-(3-aminopropyl)-p-diethoxymethylphosphinic acid (CGP 35348) attenuated the inhibitory effect of high D-glucose content on the K+-evoked release of [3H]noradrenaline and 5-[3H]hydroxy-tryptamine, suggesting that the effect on monoamine release is, at least to a major part, the result of the increased GABA release and, as a consequence, of an increased GABA concentration at inhibitory GABAB receptors. The membrane-impermeable sorbitol mimicked the increasing effect of D-glucose on [3H]GABA release and its inhibitory effect on 5-[3H]hydroxytryptamine release. However, dimethyl sulfoxide, which is known to permeate rapidly through biological membranes, had no effect at concentrations equiosmolar to D-glucose. It is concluded that a reduction in brain cell volume caused by increased extracellular, compared with cytoplasmic, osmolarity is crucial for the changes in neuronal function observed at high D- glucose and sorbitol content, In view of the fact that GABA is the main inhibitory neurotransmitter in the brain, the increased GABA release may be assumed to contribute to the pathogenesis of hyperosmolar diabetic coma.  相似文献   

13.
The effect of hemidecortication on the endogenous levels of amino acids in medial, sulcal, and dorsal frontal cortex as well as in parietal, temporal, and occipital cortex of the rat was investigated. Under aseptic conditions, the right cerebral cortex was aspirated by suction. Then, 21 days later, the content of glutamic acid, aspartic acid, gamma-aminobutyric acid, glycine, serine, threonine, and alanine was analyzed in six areas of the intact contralateral cortex using GLC. The results demonstrated a specific decrease in the endogenous levels of glutamic acid in both parietal and temporal cortex after hemidecortication of the contralateral side. This finding suggests that glutamic acid may serve as a neurotransmitter for some of the interhemispheric corticoparietal and corticotemporal fibers. In a follow-up experiment, the effect of a frontal lesion on the endogenous levels of the same amino acids in the striatum was also examined. In this case, the glutamic acid content exhibited a decrease of 31% relative to the control value. This observation confirms the earlier finding of a glutamate-containing pathway from the frontal cortex to the striatum.  相似文献   

14.
The mechanism by which protein kinase C (PKC) activates transmitter release from guinea pig cerebrocortical synaptosomes was investigated by employing parallel fluorescent assays of glutamate release, cytoplasmic free Ca2+, and plasma membrane potential. 4 beta-Phorbol dibutyrate (4 beta-PDBu) enhances the Ca(2+)-dependent, 4-aminopyridine (4AP)-evoked release of glutamate from synaptosomes, the 4AP-evoked elevation of cytoplasmic free Ca2+, and the 4AP-evoked depolarization of the plasma membrane. 4 beta-PDBu itself causes a slow depolarization, which may underlie the small effect of 4 beta-PDBu on spontaneous, KCl-evoked, and Ca(2+)-independent/4AP-evoked glutamate release. Because 4AP (but not KCl) generates spontaneous, tetrodotoxin-sensitive action potentials in synaptosomes, a major locus of presynaptic PKC action is to enhance these action potentials, perhaps by inhibiting delayed rectifier K+ channels.  相似文献   

15.
Aim Energy deprivation causes neuronal death affecting the cognitive and memory ability of an individual. The kinetic parameters of glutamate dehydrogenase (GDH), the enzyme involved in the production of glutamate, was studied in the cerebellum and liver and the binding parameters of glutamate receptors in the cerebellum of insulin-induced hypoglycaemic and streptozotocin-induced diabetic rats were studied to reveal the role of glutamate excitotoxicity. Methods A single intrafemoral dose of streptozotocin was administered to induce diabetes. Hypoglycaemia was induced by appropriate doses of insulin subcutaneously in control and diabetic rats. The kinetic parameters V max and K m of GDH were studied spectrophotometrically at different substrate concentrations of α-ketoglutarate. Glutamate receptor binding assay was done with different concentrations of [3H] Glutamate. Results The GDH enzyme assay showed a significant increase (P < 0.001) in the V max of the enzyme in the cerebellum of hypoglycaemic and diabetic rat groups when compared to control. The V max of hypoglycaemic groups was significantly increased (P < 0.001) when compared to diabetic group. In the liver, the V max of GDH was significantly increased (P < 0.001) in the diabetic and diabetic hypoglycaemia group when compared to control. The V max of GDH increased significantly (P < 0.001) in the diabetic hypoglycaemic rats compared to diabetic group, whereas the control hypoglycaemic rats showed a significant decrease in V max (P < 0.001) when compared to diabetic and diabetic hypoglycaemic rats. The K m showed no significant change amongst the groups in cerebellum and liver. Scatchard analysis showed a significant increase (P < 0.001) in B max in the cerebellum of hypoglycaemic and diabetic rats when compared to control. The B max of hypoglycaemic rats significantly increased (P < 0.001) when compared to diabetic group. In hypoglycaemic groups, B max of the control hypoglycaemic rats showed a significant increase (P < 0.001) compared to diabetic hypoglycaemic rats. The K d of the diabetic group decreased significantly (P < 0.01) when compared to control and control hypoglycaemic rats. There was a significant decrease (P < 0.05) in the K d of diabetic hypoglycaemic group when compared to the control hypoglycaemic rats. Conclusion Our studies demonstrated the increased enzyme activity in the hypoglycaemic rats with increased production of extracellular glutamate. The present study also revealed increased binding parameters of glutamate receptors reflecting an increased receptor number with increase in the affinity. This increased number of receptors and the increased glutamate production will lead to glutamate excitotoxicity and neuronal degeneration which has an impact on the cognitive and memory ability. This has immense clinical significance in the management of diabetes and insulin therapy.  相似文献   

16.
gamma-Aminobutyric acid (GABA) synthesis was studied in rat brain synaptosomes by measuring the increase of GABA level in the presence of the GABA-transaminase inhibitor gabaculine. The basal rate of synaptosomal GABA synthesis in glucose-containing medium (25.9 nmol/h/mg of protein) was only 3% of the maximal activity of glutamate decarboxylase (GAD; 804 +/- 83 nmol/h/mg of protein), a result indicating that synaptosomal GAD operates at only a small fraction of its catalytic capacity. Synaptosomal GABA synthesis was stimulated more than threefold by adding 500 microM glutamine. Glutamate also stimulated GABA synthesis, but the effect was smaller (1.5-fold). These results indicate that synaptosomal GAD is not saturated by endogenous levels of its substrate, glutamate, and account for part of the unused catalytic capacity. The greater stimulation of GABA synthesis by glutamine indicates that the GAD-containing compartment is more accessible to extrasynaptosomal glutamine than glutamate. The strong stimulation by glutamine also shows that the rates of uptake of glutamine and its conversion to glutamate can be sufficiently rapid to support GABA synthesis in nerve terminals. Synaptosomes carried out a slow net synthesis of aspartate in glucose-containing medium (7.7 nmol/h/mg of protein). Aspartate synthesis was strongly stimulated by glutamate and glutamine, but in this case the stimulation by glutamate was greater. Thus, the larger part of synaptosomal aspartate synthesis occurs in a different compartment than does GABA synthesis.  相似文献   

17.
L-Glutamate (10 microM-1 mM) released endogenous adenosine from rat cortical synaptosomes. Studies with excitatory amino acid antagonists, (+)-5-methyl-16,11,dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), 6,7-dinitroquinoxaline-2,3-dione (DNQX), Mg2+, and agonists N-methyl-D-aspartate (NMDA), kainate, and quisqualate, indicated that this release was not receptor mediated. D,L-2-Amino-4-phosphonobutanoic acid (APB) also did not affect glutamate-evoked adenosine release. Inhibition of glutamate uptake by dihydrokainate or replacement of extracellular Na+ blocked glutamate-evoked adenosine release. D-aspartate, which is a substrate for the glutamate transporter but is not metabolized, also released adenosine, suggesting that release was due to amino acid transport and not to its subsequent metabolism. D-Glutamate, a relatively poor substrate for the transporter, was correspondingly less potent than L-glutamate at releasing adenosine. Glutamate-evoked adenosine release was not Ca2+ dependent or tetrodotoxin sensitive and did not appear to occur on the bidirectional nucleoside transporter. Inhibition of ecto-5'-nucleotidase virtually abolished glutamate-evoked adenosine release, indicating that adenosine was derived from extracellular metabolism of released nucleotide(s). However, L-glutamate did not release ATP and did not appear to release cyclic AMP. Therefore, transport of glutamate into presynaptic terminals releases some other nucleotide which is converted extracellularly to adenosine. This adenosine could act at P1-purinoceptors to modulate glutamatergic neurotransmission.  相似文献   

18.
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons.  相似文献   

19.
Abstract: Ischemic stroke was induced in the Mongolian gerbil by left common carotid ligation. No change in uptake of [3H]dopamine, [3H]γ-aminobutyric acid ([3H]GABA), or [14C]glutamate in synaptosomes obtained from the ischemic hemisphere was observed for up to 8 h. At 16 h after ligation, marked decrements in uptake were observed in animals showing hemiparesis: Uptake values expressed as a percent of the corresponding control hemisphere were 15.2% for dopamine, 28.0% for GABA, and 47.5% for glutamate. The differential sensitivity of dopamine terminals compared with glutamate terminals was highly significant. Separate experiments performed with synaptosomes isolated from the corpus striatum showed that the greater sensitivity to damage was intrinsic to the dopamine nerve terminal and not the result of regional variations in ischemic damage in brain. No bilateral effect of ischemia on dopamine uptake was evident. In animals exhibiting milder behavioral deficits (circling), a smaller and comparable decrement in uptake of dopamine, GABA, and glutamate was evident at 16 h, whereas animals not affected behaviorally showed no decrement at 16 h. Following uptake, the subsequent fractional release of neurotransmitter stimulated by 60 mM-potassium ions was not affected at any time point studied. Therefore, the loss in uptake at 16 h probably represents overt destruction of nerve terminals. Experiments with urethane used in place of pentobarbital for anesthesia during carotid occlusion showed that "protection" by pentobarbital was not a factor in the delayed response to ischemia. These results show that damage or destruction of nerve terminals is a delayed event following ischemia and that dopamine terminals are intrinsically more sensitive than glutamate terminals.  相似文献   

20.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号