首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-related alterations of antigen-specific T cell-mediated suppression have been examined in the 4-hydroxy-3-nitrophenyl acetyl (NP) system. Inducer suppressor T cells (Tsi) were activated in mice at the age of 3 mo (young) or 18 mo (old) by i.v. injection of NP-conjugated syngeneic spleen cells (SC). Spleen cells from the NP-SC-injected mice were subcultured in vitro with spleen cells from normal young or old mice to generate transducer suppressor T cells (Tst). Four days later subcultured cells were added to responder cell cultures 1 day before the PFC assays to trigger effector suppressor T cells (Tse). Responder cell cultures, containing NP-conjugated horse red blood cells (HRBC) and spleen cells from HRBC-primed young or old mice, were assayed on day 4 for anti-NP and anti-HRBC PFC. Suppression was found to be antigen specific and age restricted. NP-specific suppressor cells are easily induced in subculture if the Tsi and Tst cell populations are both derived from young or old mice. Conversely, if Tsi cells from young or old mice are subcultured with Tst cells from mice of a different age, suppression of the anti-NP PFC response is hardly observed. Age restriction was also found to operate in the interactions between subcultured and responder cell populations, indicating that age-matching is required for effective triggering of Tse cells by Tst cells. These results altogether suggest that aging may affect the recognition repertoire expressed in suppressor T cell subsets. Moreover, the finding that suppression is less efficient when exerted on responder spleen cells from old than from young mice provides an explanation for the increased frequency of autoimmune disorders in aging.  相似文献   

2.
The changes that accompany aging may be a result of oxidative damage to DNA that accumulates as a result of aging and age-related illnesses. Furthermore, a higher susceptibility is thought to be more common among elderly than young individuals. In the present study, we examined the severity of DNA damage caused by carbon tetrachloride (CCl4) and H2O2 in cells from young (2 month old) and older (14 month old) mice using both in vivo and in vitro exposures. CCl(4) is known to generate radical oxidative species (ROS) throughout its biotransformation in the liver. Therefore, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxdGuo) was quantified in liver DNA obtained from young and older mice treated with CCl4. In addition, DNA single-strand breaks were measured by the Comet assay in primary lung fibroblasts cultured from young and older mice and treated in vitro with H2O2. Intracellular ROS production and mitochondrial enzyme activity were determined in parallel. 8-oxodGuo levels were significantly higher in older mouse liver DNA than younger, and increased significantly with CCl4 treatment. When the basal DNA damage was subtracted, the net damage was almost equal for both. In addition, untreated cells cultured from older mice had significantly greater levels of strand breaks than cells derived from young mice. H2O2 increased the level of damage in both cell cultures. Our findings indicate that the DNA damage observed in older animals probably results from the accumulation of endogenous damage with age, perhaps due to insufficient repair, which enhances the injury caused by exposure to the toxic agents.  相似文献   

3.
Erythrocytes from young and old rats were separated into four age fractions by density-gradient centrifugation. The specific activities per cell were determined for glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and catalase (EC 1.11.1.6). Decreased specific activities were observed with increasing cell age for all four enzymes in both young and old animals. In addition, significant differences in the activities of these enzymes were observed between cells of the same age fraction from young and old donors. Susceptibility of fractionated erythrocytes to oxidative attack in vitro generated by incubation with xanthine/xanthine oxidase increased with both cell and animal age. The amount of membrane-lipid peroxidation also increased with cell and animal aging, as measured by both thiobarbituric acid and fluorescent chromolipid assays. Increases of 2-3-fold in the contents of lipid peroxides were observed between the youngest and oldest age fractions of young rats. Lipid peroxide contents in young cells of old animals were equal to those in old erythrocytes from young rats and increased by 30% with cell aging in the old donors. These results suggest that the extent of enzymic protection against oxidative and peroxidative damage decreases with erythrocyte aging. More importantly, enzymic protection in cells of old rats is considerably decreased already in the early stages of their lifespan.  相似文献   

4.
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1(+)) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1(+) cells were sorted and shown to differentiate into VE-cadherin(+) endothelial cells and α-SMA(+) smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1(+) cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1(+) cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1(+) cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1(+) cells from young or old mice. Transplantation of Flk-1(+) cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1(+) cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging.  相似文献   

5.
Aging dependent nucleolar and chromatin changes in cultivated fibroblasts   总被引:1,自引:0,他引:1  
Adult fibroblasts have already at low population doubling level (PDL) a significant percentage of cells with modified chromatin as compared to embryonic cells where altered chromatin is seen only at high PDL. In fibroblast populations from a patient with Werner's syndrome, the percentage of cells with both altered chromatin and nucleoli was much higher than in the control cultures from normal donors. The data show for the first time nucleoprotein changes in cells from donors with an aging syndrome and reinforce the concept that serial replication of fibroblasts in vitro causes lesions identical to those of aging in vivo.  相似文献   

6.
7.
In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM-MSC) cultures. Sorted CD264+ hBM-MSCs from two age-matched donors have elevated β-galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264 hBM-MSCs. Counterintuitive to their aging phenotype, CD264+ hBM-MSCs exhibited comparable survival to matched CD264 hBM-MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony-forming efficiency. These findings have ramifications for the preparation of hBM-MSC therapies given the prevalence of aging CD264+ cells in hBM-MSC cultures and the popularity of colony-forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.  相似文献   

8.
In a senescence study, skin fibroblast cultures grown in the presence of a second batch of fetal calf serum (FCS) revealed delayed onsets of cell culture senescence and prolonged in vitro lifespans when compared to cell cultures grown on the initial batch of serum. These statistically significant differences occurred despite the fact that both sera displayed equal growth promoting abilities as measured by cell culture growth curves performed on parallel cultures with the two sera. When cultures grown in either sera were analyzed separately, the onset of cell culture senescence was earlier and in vitro lifespan was shorter in those cultures derived from the old donor group (ages 63–92) when compared to cultures derived from young donors (ages 21–36).  相似文献   

9.
The replication of vesicular stomatitis virus was examined in early-passage skin fibroblast cultures from old and young human donors. The production of virus was analysed by measuring synthesis of viral RNA in actinomycin D-treated cells, and by determining the yield of biologically-active viral progeny by plaque assay. Although no statistically significant differences (P < 0.05) were observed between old and young cultures, our assays were shown to be capable of detecting impaired macromolecular synthesis induced by incorporation of amino acid analogues. These results indicate that macromolecular synthesis does not appear to be significantly altered in cells from older donors.  相似文献   

10.
To assess the influence of intracellular hemoglobin concentration on red cell viscoelasticity and to better understand changes related to in vivo aging, membrane shear elastic moduli (mu) and time constants for cell shape recovery (tc) were measured for age-fractionated human erythrocytes and derived ghosts. Time constants were also measured for osmotically shrunk cell fractions. Young and old cells had equal mu, but tc was longer for older cells. When young cells were shrunk to equal the volume (and hence hemoglobin concentration and internal viscosity) of old cells, tc increased only slightly. Thus membrane viscosity (eta = mu . tc) increases during aging, regardless of increased internal viscosity. However, further shrinkage of young cells, or slight shrinkage of old cells, caused a sharp increase in tc. Because this increased tc is not explainable by elevated internal viscosity, eta increased, possibly due to a concentration-dependent hemoglobin-membrane interaction. Ghosts had a greater mu than intact cells, with proportionally faster tc; their membrane viscosity was therefore similar to intact cells. However, the ratio of old/young membrane viscosity was less for ghosts than for intact cells, indicating that differences between young and old cell eta may be partly explained by altered hemoglobin-membrane interaction during aging. It is postulated that these changes in viscoelastic behavior influence in vivo survival of senescent cells.  相似文献   

11.
Aging‐mediated immune dysregulation affects the normal cardiac immune cell phenotypes and functions, resulting in cardiac distress. During cardiac inflammation, immune activation is critical for mounting the regenerative responses to maintain normal heart function. We investigated the impact of aging on myeloid cell phenotype and function during cardiac inflammation induced by a sub‐lethal dose of LPS. Our data show that hearts of old mice contain more myeloid cells than the hearts of young mice. However, while the number of monocytic‐derived suppressor cells did not differ between young and old mice, monocytic‐derived suppressor cells from old mice were less able to suppress T‐cell proliferation. Since cardiac resident macrophages (CRMs) are important for immune surveillance, clearance of dead cells, and tissue repair, we focused our studies on CRMs phenotype and function during steady state and LPS treatment. In the steady state, we observed significantly more MHC‐IIlow and MHC‐IIhigh CRMs in the hearts of old mice; however, these populations were decreased in both young and aged mice upon LPS treatment and the decrease in CRM populations correlated with defects in cardiac electrical activity. Notably, mice treated with a liver X receptor (LXR) agonist showed an increase in MerTK expression in CRMs of both young and old mice, which resulted in the reversal of cardiac electrical dysfunction caused by lipopolysaccharide (LPS). We conclude that aging alters the phenotype of CRMs, which contributes to the dysregulation of cardiac electrical dysfunction during infection in aged mice.  相似文献   

12.
13.
It has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.  相似文献   

14.
The capability of the bone marrow (BM) to generate new B cells in aging was studied in vitro. BM cells from old (26 to 30 mo) or young (3 mo) BALB/c and (C3H/eB x C57BL/6)F1 mice were depleted of mature B cells and these surface Ig (sIg) BM cells were incubated in culture for 3 days. The frequency of newly generated B cells in these cultures was determined by assessing the frequency of slg+ cells and of B cells forming colonies in agar and by assaying the proliferative capacity of these newly generated B cells after stimulation by LPS. We found that BM cells from aged mice are significantly inferior to young ones in their capability to generate new B cells in culture. By mixing old and young slg- BM cells, we found that, in general, this reduction was not caused by a suppressive effect of T cells or of any other cells, but rather to lack of some sort of supportive cell or factor in the aged BM. In addition, we found that the frequency of cells expressing the B220 surface molecule, a B lineage-specific marker, is significantly reduced in aged BM. These results indicate that a quantitative decrease in B cell progenitors combined with changes in cell populations that are important in supporting B cell generation contribute to the age-related decrease in the capacity to generate B cells.  相似文献   

15.
The effects of aging on cellular and molecular components of the 4-hydroxy-3-nitrophenyl acetyl-specific suppressor T (Ts) cell circuit were analyzed in vitro using inducer (Ts1), transducer (Ts2), and effector (Ts3) cells and activating factors (TsF1 and TsF2) derived from young or old mice. The activation of Ts2 cells by TsF1 and of Ts3 cells by TsF2 was found age-restricted, suggesting a loss of Ts2 and Ts3 cell subsets in old mice. However, the activation of Ts3 cells by small amounts of TsF2 is more efficient when both are derived from old rather than from young mice while the same level of maximum suppression is attained. Higher affinity of the interactions involved in Ts cell activation may compensate for loss of Ts cell subsets in old mice. No age restriction was found for antigen presentation to Ts1 cells and for the interaction between Ts3 cells and target B cells. Thus, the effects of aging on immunosuppression result from changes within the Ts cell circuit.  相似文献   

16.
Two different immune responses were compared in spleen cells obtained from old and young CBA/HT6J mice. Spleen cells from old mice (23 to 33 months) responded about half as well as did spleen cells from young mice (4 to 10 months) in the adoptive transfer anti-sheep red blood cell (SRBC) plague-forming assay, and caused slightly less than half the uptake of tritiated thymidine in response to phytohemagglutinin (PHA) in vitro. Marrow stem cell from some of the old and young mice whose splenic immune responses were tested were transplanted into irradiated young CBA/CaJ recipients. Seven to 17 weeks later these same immune responses were tested in the spleen cells of these young recipients, and the T6 chromosome marker was used to identify donor cells. Old animals' responses varied greatly, perhaps due to suppressing cells or factors in some individuals. Therefore, cells were never pooled and the responses of receipients were compared to the responses of the donor whose marrow had populated them. The response for a particular old donor, or for the recipients of its stem cells, was divided by the response for the young control used with that donor, or for its stem cell recipients. This was called the old/young ratio. With original donors with an old/young ratio for the SRBC response of (mean +/- S.D.) 0.35 +/- 0.14, The old/young ratio for that same response in the recipients was significantly improved to 1.26 +/- 0.71. In original donors with an old/young ratio for the PHA response of 0.44 +/- 0.17, the old/young ratio in the recipients improved significantly to 0.86 +/- 0.27. Thus, little or none of the decline with age in these immune responses was intrinsic to the old lymphoid stem cells.  相似文献   

17.
Age-related changes in T cell function.   总被引:4,自引:0,他引:4  
A comparison was made of the abilities of carrier (BGG)-primed T cell populations from young (4-month old), middle-aged (14- and 19-month old) and old (31- and 34-month old) mice to collaborate with hapten (DNP)-primed B cells from young mice in a cell-transfer system. The plaque-forming cell responses to 2,4-dinitrophenol (DNP) were measured by a modification of the Jerne plaque assay. The DNP-specific antibody-forming cell responses of old T cell/young B cell combinations were significantly lower than those of young T cell/young B cell combinations, both in the number of T cells needed for peak response and in the size of that response. These data indicate that the primed T cell populations of old mice are deficient by a factor of 6 in their ability to initiate B cell proliferation and differentiation into antibody-forming cells.  相似文献   

18.
19.
The impairment of angiogenesis in aging has been attributed, in part, to alterations in proteins associated with the extracellular matrix (ECM). SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is a matricellular protein that regulates endothelial cell function as well as cell-ECM interactions. We have previously shown that angiogenesis, as reflected by fibrovascular invasion into subcutaneously implanted polyvinyl alcohol (PVA) sponges, is increased in SPARC-null mice (6-9 months of age) relative to their wild-type (WT) counterparts. In this study, we define the influence of aging on (a) the expression of SPARC and (b) fibrovascular invasion into sponge implants in SPARC-null and WT mice. The expression of SPARC in fibroblasts and endothelial cells derived from young donors (humans mean age less than 30 years and mice 4-6 months of age) and old donors (humans mean age over 65 years and mice 22-27 months of age) decreased 1.6 to 2.3-fold with age. Analysis of fibrovascular invasion into sponges implanted into old (22-27 months) SPARC-null and WT mice showed no differences in percent area of invasion or collagenous ECM. Moreover, sponges from old SPARC-null and WT mice contained similar levels of VEGF that were significantly lower than those from young (4-6 months) mice. In contrast to fibroblasts from young SPARC-null mice, dermal fibroblasts from old SPARC-null mice did not migrate farther, proliferate faster, or produce greater amounts of VEGF relative to their old WT counterparts. However, when stimulated with TGF-beta1, primary cells isolated from the sponge implants, and dermal fibroblasts from both old SPARC-null and WT mice, showed marked increases in VEGF secretion. These data indicate that aging results in a loss of enhanced angiogenesis in SPARC-null mice, as a result of the detrimental impact of age on cellular functions, collagen deposition, and VEGF synthesis. However, the influence of aging on these processes may be reversed, in part, by growth factor stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号