首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the development and validation of the program GENFOLD, a genetic algorithm that calculates protein structures using restraints obtained from NMR, such as distances derived from nuclear Overhauser effects, and dihedral angles derived from coupling constants. The program has been tested on three proteins: the POU domain (a small three-helix DNA-binding protein), bovine pancreatic trypsin inhibitor (BPTI), and the starch-binding domain from Aspergillus niger glucoamylase I, a 108-residue beta-sheet protein. Structures were calculated for each protein using published NMR restraints. In addition, structures were calculated for BPTI using artificial restraints generated from a high-resolution crystal structure. In all cases the fittest calculated structures were close to the target structure, and could be refined to structures indistinguishable from the target structures by means of a low-temperature simulated annealing refinement. The effectiveness of the program is similar to that of distance geometry and simulated annealing methods, and it is capable of using a very wide range of restraints as input. It can thus be readily extended to the calculation of structures of large proteins, for which few NOE restraints may be available.  相似文献   

3.
Errors and imprecisions in distance restraints derived from NOESY peak volumes are usually accounted for by generous lower and upper bounds on the distances. In this paper, we propose a new form of distance restraints, replacing the subjective bounds by a potential function obtained from the error distribution of the distances. We derived the shape of the potential from molecular dynamics calculations and by comparison of NMR data with X-ray crystal structures. We used complete cross-validation to derive the optimal weight for the data in the calculation. In a model system with synthetic restraints, the accuracy of the structures improved significantly compared to calculations with the usual form of restraints. For experimental data sets, the structures systematically approach the X-ray crystal structures of the same protein. Also standard quality indicators improve compared to standard calculations. The results did not depend critically on the exact shape of the potential. The new approach is less subjective and uses fewer assumptions in the interpretation of NOESY peak volumes as distance restraints than the usual approach. Figures of merit for the structures, such as the RMS difference from the average structure or the RMS difference from the data, are therefore less biased and more meaningful measures of structure quality than with the usual form of restraints.  相似文献   

4.
Restrained molecular dynamics is widely used to calculate DNA structures from NMR data. Here, results of an in silico experiment show that the force field can be significant compared to the NMR restraints in driving the final structures to converge. Specifically, we observed that i) the influence of the force field leads to artificially tight convergence within final families of structures and ii) the precision and character of resulting structures depend on the choice of force field used in the calculations. A canonical B-DNA model was used as a target structure. Distances, dihedral angles, and simulated residual dipolar couplings were measured in the target structure and used as restraints. X-PLOR and Discover, which use force fields developed for CHARMM and AMBER programs, respectively, were tested and found to produce different final structures despite the use of identical distance and dihedral restraints. Incorporation of residual dipolar coupling restraints in X-PLOR improves convergence with the target structure and between families of structures indicating that the force field dependence can potentially be overcome if residual dipolar coupling restraints are employed.  相似文献   

5.
Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys40, residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein dynamics but also protein-lipid interactions in detail.  相似文献   

6.
The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259-264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F-measure (RPF) scores. On further examination, the additional MR-performance shortfall for NMR refined structures as compared with the X-ray structure were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in NMR structures with improved MR performance.  相似文献   

7.
Syringomycin-E (SR-E) is a cyclic lipodepsinonapeptide produced by certain strains of the bacterium Pseudomonas syringae pv. syringae. It shows inhibitory effects against many fungal species, including human pathogens. Its primary biological target is the plasma membrane, where it forms channels comprised of at least six SR-E molecules. The high-resolution structure of SR-E and the structure of the channels are currently not known. In this paper, we investigate in atomic detail the molecular features of SR-E in water by NMR and in water and octane by molecular dynamics simulation (MD). We built a model of the peptide and examined its structure in water and octane in 200 ns MD simulations both with and without distance restraints derived from NMR NOE data. The resulting trajectories show good agreement with the measured NOEs and circular dichroism data from the literature and provide atomistic models of SR-E that are an important step toward a better understanding of the antifungal and antibacterial activity of this peptide.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
The NMR solution structures of NTX-1 (PDB code 1W6B and BMRB 6288), a long neurotoxin isolated from the venom of Naja naja oxiana, and the molecular dynamics simulation of these structures are reported. Calculations are based on 1114 NOEs, 19 hydrogen bonds, 19 dihedral angle restraints and secondary chemical shifts derived from 1H to 13C HSQC spectrum. Similar to other long neurotoxins, the three-finger like structure shows a double and a triple stranded beta-sheet as well as some flexible regions, particularly at the tip of loop II and the C-terminal tail. The solution NMR and molecular dynamics simulated structures are in good agreement with root mean square deviation values of 0.23 and 1 A for residues involved in beta-sheet regions, respectively. The overall fold in the NMR structure is similar to that of the X-ray crystallography, although some differences exist in loop I and the tip of loop II. The most functionally important residues are located at the tip of loop II and it appears that the mobility and the local structure in this region modulate the binding of NTX-1 and other long neurotoxins to the nicotinic acetylcholine receptor.  相似文献   

9.
Abstract

Restrained molecular dynamics is widely used to calculate DNA structures from NMR data. Here, results of an in silico experiment show that the force field can be significant compared to the NMR restraints in driving the final structures to converge. Specifically, we observed that i) the influence of the force field leads to artificially tight convergence within final families of structures and ii) the precision and character of resulting structures depend on the choice of force field used in the calculations. A canonical B-DNA model was used as a target structure. Distances, dihedral angles, and simulated residual dipolar couplings were measured in the target structure and used as restraints. X-PLOR and Discover, which use force fields developed for CHARMM and AMBER programs, respectively, were tested and found to produce different final structures despite the use of identical distance and dihedral restraints. Incorporation of residual dipolar coupling restraints in X-PLOR improves convergence with the target structure and between families of structures indicating that the force field dependence can potentially be overcome if residual dipolar coupling restraints are employed.  相似文献   

10.
The effect of internal dynamics on the accuracy of nuclear magnetic resonance (NMR) structures was studied in detail using model distance restraint sets (DRS) generated from a 6.6 nanosecond molecular dynamics trajectory of bovine pancreatic trypsin inhibitor. The model data included the effects of internal dynamics in a very realistic way. Structure calculations using different error estimates were performed with iterative removal of systematically violated restraints. The accuracy of each calculated structure was measured as the atomic root mean square (RMS) difference to the optimized average structure derived from the trajectory by structure factors refinement. Many of the distance restraints were derived from NOEs that were significantly affected by internal dynamics. Depending on the error bounds used, these distance restraints seriously distorted the structure, leading to deviations from the coordinate average of the dynamics trajectory even in rigid regions. Increasing error bounds uniformly for all distance restraints relieved the strain on the structures. However, the accuracy did not improve. Significant improvement of accuracy was obtained by identifying inconsistent restraints with violation analysis, and excluding them from the calculation. The highest accuracy was obtained by setting bounds rather tightly, and removing about a third of the restraints. The limiting accuracy for all backbone atoms was between 0.6 and 0.7 A. Also, the precision of the structures increased with removal of inconsistent restraints, indicating that a high precision is not simply the consequence of tight error bounds but of the consistency of the DRS. The precision consistently overestimated the accuracy.  相似文献   

11.
Determination of the accurate three-dimensional structure of large proteins by NMR remains challenging due to a loss in the density of experimental restraints resulting from the often prerequisite perdeuteration. Solution small-angle scattering, which carries long-range translational information, presents an opportunity to enhance the structural accuracy of derived models when used in combination with global orientational NMR restraints such as residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). We have quantified the improvements in accuracy that can be obtained using this strategy for the 82 kDa enzyme Malate Synthase G (MSG), currently the largest single chain protein solved by solution NMR. Joint refinement against NMR and scattering data leads to an improvement in structural accuracy as evidenced by a decrease from approximately 4.5 to approximately 3.3 A of the backbone rmsd between the derived model and the high-resolution X-ray structure, PDB code 1D8C. This improvement results primarily from medium-angle scattering data, which encode the overall molecular shape, rather than the lowest angle data that principally determine the radius of gyration and the maximum particle dimension. The effect of the higher angle data, which are dominated by internal density fluctuations, while beneficial, is also found to be relatively small. Our results demonstrate that joint NMR/SAXS refinement can yield significantly improved accuracy in solution structure determination and will be especially well suited for the study of systems with limited NMR restraints such as large proteins, oligonucleotides, or their complexes.  相似文献   

12.
The solution structure of murine gammaS-crystallin (gammaS) has been determined by multidimensional triple resonance NMR spectroscopy, using restraints derived from two sets of dipolar couplings, recorded in different alignment media, and supplemented by a small number of NOE distance restraints. gammaS consists of two topologically similar domains, arranged with an approximate twofold symmetry, and each domain shows close structural homology to closely related (approximately 50% sequence identity) domains found in other members of the gamma-crystallin family. Each domain consists of two four-strand "Greek key" beta-sheets. Although the domains are tightly anchored to one another by the hydrophobic surfaces of the two inner Greek key motifs, the N-arm, the interdomain linker and several turn regions show unexpected flexibility and disorder in solution. This may contribute entropic stabilization to the protein in solution, but may also indicate nucleation sites for unfolding or other structural transitions. The method used for solving the gammaS structure relies on the recently introduced molecular fragment replacement method, which capitalizes on the large database of protein structures previously solved by X-ray crystallography and NMR.  相似文献   

13.
The amount of experimental restraints e.g., NOEs is often too small for calculating high quality three-dimensional structures by restrained molecular dynamics. Considering this as a typical missing value problem we propose here a model based data imputation technique that should lead to an improved estimation of the correct structure. The novel automated method implemented in AUREMOL makes a more efficient use of the experimental information to obtain NMR structures with higher accuracy. It creates a large set of substitute restraints that are used either alone or together with the experimental restraints. The new approach was successfully tested on three examples: firstly, the Ras-binding domain of Byr2 from Schizosaccharomyces pombe, the mutant HPr (H15A) from Staphylococcus aureus, and a X-ray structure of human ubiquitin. In all three examples, the quality of the resulting final bundles was improved considerably by the use of additional substitute restraints, as assessed quantitatively by the calculation of RMSD values to the “true” structure and NMR R-factors directly calculated from the original NOESY spectra or the published diffraction data.  相似文献   

14.
TOUCHSTONEX, a new method for folding proteins that uses a small number of long-range contact restraints derived from NMR experimental NOE (nuclear Overhauser enhancement) data, is described. The method employs a new lattice-based, reduced model of proteins that explicitly represents C(alpha), C(beta), and the sidechain centers of mass. The force field consists of knowledge-based terms to produce protein-like behavior, including various short-range interactions, hydrogen bonding, and one-body, pairwise, and multibody long-range interactions. Contact restraints were incorporated into the force field as an NOE-specific pairwise potential. We evaluated the algorithm using a set of 125 proteins of various secondary structure types and lengths up to 174 residues. Using N/8 simulated, long-range sidechain contact restraints, where N is the number of residues, 108 proteins were folded to a C(alpha)-root-mean-square deviation (RMSD) from native below 6.5 A. The average RMSD of the lowest RMSD structures for all 125 proteins (folded and unfolded) was 4.4 A. The algorithm was also applied to limited experimental NOE data generated for three proteins. Using very few experimental sidechain contact restraints, and a small number of sidechain-main chain and main chain-main chain contact restraints, we folded all three proteins to low-to-medium resolution structures. The algorithm can be applied to the NMR structure determination process or other experimental methods that can provide tertiary restraint information, especially in the early stage of structure determination, when only limited data are available.  相似文献   

15.
State-of-the-art methods based on CNS and CYANA were used to recalculate the nuclear magnetic resonance (NMR) solution structures of 500+ proteins for which coordinates and NMR restraints are available from the Protein Data Bank. Curated restraints were obtained from the BioMagResBank FRED database. Although the original NMR structures were determined by various methods, they all were recalculated by CNS and CYANA and refined subsequently by restrained molecular dynamics (CNS) in a hydrated environment. We present an extensive analysis of the results, in terms of various quality indicators generated by PROCHECK and WHAT_CHECK. On average, the quality indicators for packing and Ramachandran appearance moved one standard deviation closer to the mean of the reference database. The structural quality of the recalculated structures is discussed in relation to various parameters, including number of restraints per residue, NOE completeness and positional root mean square deviation (RMSD). Correlations between pairs of these quality indicators were generally low; for example, there is a weak correlation between the number of restraints per residue and the Ramachandran appearance according to WHAT_CHECK (r = 0.31). The set of recalculated coordinates constitutes a unified database of protein structures in which potential user- and software-dependent biases have been kept as small as possible. The database can be used by the structural biology community for further development of calculation protocols, validation tools, structure-based statistical approaches and modeling. The RECOORD database of recalculated structures is publicly available from http://www.ebi.ac.uk/msd/recoord.  相似文献   

16.
Xu W  Mu Y 《Biophysical chemistry》2008,137(2-3):116-125
Replica-exchange molecular dynamics simulations with hybrid Hamiltonian in explicit solvent were performed to study the folding of a designed 20-residue miniprotein, Trpcage, from a fully extended structure. During the simulations several folding/unfolding events happened. In the folded states the majority of experimentally observed NMR NOE restraints are satisfied. The folded structures have root mean squared deviation of 2.0 A with respect to the NMR structures considering all heavy atoms. The free-energy surface constructed by the hybrid Hamiltonian simulations is similar to the one built by a standard replica-exchange simulation which started from the native structure. Consistent with previous experimental observation, a pre-existing hydrophobic collapse in the unfolded state is detected by investigating the desolvation behavior of Trpcage. At room temperature, an intermediate state featured by a misfolded core, a nearly formed alpha-helix segment and an absence of 3(10)-helix is found. The replica exchange with hybrid Hamiltonian method is shown here to be capable of resolving the folding picture of the miniprotein.  相似文献   

17.
The assignment of the side-chain NMR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments. In order to obtain the three-dimensional structure, NOE data were collected from 15N-NOESY-HSQC, 13C-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 A on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.  相似文献   

18.
The solution conformation of a synthetic snake venom toxin waglerin I, has been determined by using proton nuclear magnetic resonance spectroscopy. By y a combination of various two-dimensional NMR techniques, the 1H-NMR spectrum of waglerin I was completely assigned. A set of 247 interproton distance restraints was derived from nuclear Overhauser enhancement (NOE) measurements. These NOE constraints, in addition to the 2 dihedral angle restraints (from coupling constant measurements) and 7 ω torsion angle restraints for prolines, formed the basis of three-dimensional structure determined by molecular dynamics techniques. The 19 structures that were obtained satisfy the experimental restraints, and display small deviation from idealized covalent geometry. Analysis of converged structures indicates that the toxin has no special secondary structure. In the solution structure of waglerin I, the central ring region is well defined but the N- and C-termini possesses more disorder.  相似文献   

19.
The local structure within an 8-A radius around residue 45 of a recombinant F45W variant of human ubiquitin has been determined using 67 interproton distance restraints measured by two-dimensional proton NMR. Proton chemical shift evidence indicates that structural perturbations due to the F45W mutation are minimal and limited to the immediate vicinity of the site of mutation. Simulated annealing implemented with stochastic boundary molecular dynamics was applied to refine the structure of Trp 45 and 10 neighboring residues. The stochastic boundary method allowed the entire protein to be reassembled from the refined coordinates and the outlying unrefined coordinates with little distortion at the boundary. Refinement began with four low-energy indole ring orientations of F45W-substituted wild-type (WT) ubiquitin crystal coordinates. Distance restraints were derived from mostly long-range NOE cross peaks with 51 restraints involving the Trp 45 indole ring. Tandem refinements of 64 structures were done using either (1) upper and lower bounds derived from qualitative inspection of NOE crosspeak intensities or (2) quantitative analysis of cross-peak heights using the program MARDIGRAS. Though similar to those based on qualitative restraint, structures obtained using quantitative NOE analysis were superior in terms of precision and accuracy as measured by back-calculated sixth-root R factors. The six-membered portion of the indole ring is nearly coincident with the phenyl ring of the WT and the indole NH is exposed to solvent. Accommodation of the larger ring is accompanied by small perturbations in the backbone and a 120 degrees rotation of the chi 2 dihedral angle of Leu 50.  相似文献   

20.
The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in experimentally derived solution structures. Predictions were run on loops drawn from (1)NMR entries in the Protein Databank (PDB), and from (2) the RECOORD database in which NMR entries from the PDB have been standardized and re-refined in explicit solvent. The predicted structures are validated by comparison with experimental distance restraints, a test of structural quality as defined by the WHAT IF structure validation program, root mean square deviation (RMSD) of the predicted loops to the original structural models, and comparison of precision of the original and predicted ensembles. Results show that for the RECOORD ensembles, the predicted loops are consistent with an average of 95%, 91%, and 87% of experimental restraints for the short, medium and long loops respectively. Prediction accuracy is strongly affected by the quality of the original models, with increases in the percentage of experimental restraints violated of 2% for the short loops, and 9% for both the medium and long loops in the PDB derived ensembles. We anticipate the application of our protocol to theoretical modeling of protein structures, such as fold recognition methods; as well as to experimental determination of protein structures, or segments, for which only sparse NMR restraint data is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号