首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature-sensitive penicillin tolerance response previously reported in amino acid-deprived Escherichia coli (W. Kusser and E. E. Ishiguro, J. Bacteriol. 169:2310–2312, 1987) was not due to the induction of the heat shock response resulting from a temperature upshift and was therefore unrelated to the findings of another report (J. K. Powell and K. D. Young, J. Bacteriol. 173:4021–4026, 1991) indicating a positive correlation between the expression of heat shock proteins and penicillin tolerance. The thermosensitive event occurred in the lysis induction stage.  相似文献   

2.
C A Reeve  P S Amy    A Matin 《Journal of bacteriology》1984,160(3):1041-1046
In a typical Escherichia coli K-12 culture starved for glucose, 50% of the cells lose viability in ca. 6 days (Reeve et al., J. Bacteriol. 157:758-763, 1984). Inhibition of protein synthesis by chloramphenicol resulted in a more rapid loss of viability in glucose-starved E. coli K-12 cultures. The more chloramphenicol added (i.e., the more protein synthesis was inhibited) and the earlier during starvation it was added, the greater was its effect on culture viability. Chloramphenicol was found to have the same effect on a relA strain as on an isogenic relA+ strain of E. coli. Addition of the amino acid analogs S-2-aminoethylcysteine, 7-azatryptophan, and p-fluorophenylalanine to carbon-starved cultures to induce synthesis of abnormal proteins had an effect on viability similar to that observed when 50 micrograms of chloramphenicol per ml was added at zero time for starvation. Both chloramphenicol and the amino acid analogs had delayed effects on viability, compared with their effects on synthesis of normal proteins. The need for protein synthesis did not arise from cryptic growth, since no cryptic growth of the starving cells was observed under the conditions used. From these and previous results obtained from work with peptidase-deficient mutants of E. coli K-12 and Salmonella typhimurium LT2 (Reeve et al., J. Bacteriol. 157:758-763, 1984), we concluded that a number of survival-related proteins are synthesized by E. coli K-12 cells as a response to carbon starvation. These proteins are largely synthesized during the early hours of starvation, but their continued activity is required for long-term survival.  相似文献   

3.
In order to see whether the stringent response was involved in biofilm formation, Escherichia coli DS291 (MG1655), and its isogenic relA spoT derivative were grown for 48 h in a chemostat at dilution rates of 0.025 and 0.25 h(-1) under serine limitation. The absence of the stringent response genes relA and spoT had little effect on the planktonic cell concentrations. However, a significant (P < 0.001) reduction in biofilm cell density of the relA spoT mutants was seen at a doubling time of 40 h. At a doubling time of 4 h, differences in biofilm cell density were not significant. Scanning confocal laser microscopy demonstrated the cell densities of microcolonies in the relA spoT mutant to be lower than those in the wild type. Using a microtiter plate assay, we found biofilm formation in relA spoT mutants to be similarly reduced in minimal media but to be enhanced in rich media (Luria-Bertani broth). No significant differences in biofilm formation were observed between wild type and isogenic relA mutants under any growth conditions. Overall, these results suggest that both stringent response genes relA and spoT are important in nutrient-limited biofilms.  相似文献   

4.
In previous studies we demonstrated that mutations in the genes cysB, cysE, and cls (nov) affect resistance of Escherichia coli to novobiocin (J. Rakonjac, M. Milic, and D. J. Savic, Mol. Gen. Genet. 228:307-311, 1991; R. Ivanisevic, M. Milic, D. Ajdic, J. Rakonjac, and D. J. Savic, J. Bacteriol. 177:1766-1771, 1995). In this work we expand this list with mutations in rpoN (the gene for RNA polymerase subunit sigma54) and the tRNA synthetase genes alaS, argS, ileS, and leuS. Similarly to resistance to the penicillin antibiotic mecillinam, resistance to novobiocin of tRNA synthetase mutants appears to depend upon the RelA-mediated stringent response. However, at this point the overlapping pathways of mecillinam and novobiocin resistance diverge. Under conditions of stringent response induction, either by the presence of tRNA synthetase mutations or by constitutive production of RelA protein, inactivation of the cls gene diminishes resistance to novobiocin but not to mecillinam.  相似文献   

5.
Through the use of a new nucleotide extraction procedure, we had previously shown that relaxed mutants of Escherichia coli exhibit a unique response to amino acid starvation (Lagosky, P. A., and Chang, F. N. (1980) J. Bacteriol. 144, 499-508). The basal level amounts of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA and phenotypically relaxed relA+ rplK (relC) strains were shown to decrease at the onset of amino acid limitation and to remain severely depressed throughout the course of the starvation. Upon resupplementation of amino acid-starved relaxed mutants, the production of ppGpp resumes and results in the temporary overaccumulation of this nucleotide beyond its original basal level amount. We now show that the basal level ppGpp content of relaxed bacteria, as well as its subsequent fluctuations in response to amino acid starvation, is inversely correlated with the initial rates of RNA synthesis in these strains. The ability of ppGpp to control the rate of protein synthesis in relA mutants was also examined. It was observed that ppGpp had no apparent direct effect on the initial rates of protein synthesis in relA mutants. The constant inverse correlation which exists between ppGpp content in relA mutants, and their rates of RNa synthesis provide evidence which indicates that basal level ppGpp synthesis has definite physiological significance. It also suggests that the synthesis of basal level ppGpp might be an absolute requirement needed for normal bacterial growth.  相似文献   

6.
We observed that the synthesis of basal-level guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA mutants and relA+ relC strains of Escherichia coli decreased in response to amino acid limitation and that this was accompanied by an increase in ribonucleic acid (RNA) synthesis. Addition of the required amino acid to starved cultures of relaxed bacteria resulted in the resumption of ppGpp synthesis and a concomitant decrease in RNA production. Our results indicate that relA mutants retain a stringent factor-independent ribosomal mechanism for basal-level ppGpp synthesis. They also suggest that in relA+ bacteria, stringent factor-mediated ppGpp synthesis and the production of basal-level ppGpp are mutually exclusive. These findings substantiate the hypothesis that there are two functionally discrete mechanisms for ppGpp synthesis in E. coli. Through these studies we have also obtained new evidence which indicates that ppGpp serves as a modulator of RNA synthesis during balanced growth as well as under conditions of nutritional downshift and starvation.  相似文献   

7.
8.
A Wegrzyn  K Taylor    G Wegrzyn 《Journal of bacteriology》1996,178(19):5847-5849
We found previously that lambda plasmid DNA replication in amino acid-starved Escherichia coli relA mutants (i.e., during the relaxed response), which is carried out by the inherited replication complex, is dependent on functions of DnaK and GrpE molecular chaperones but proceeds in a dnaj mutant at a nonpermissive temperature. Here we demonstrate that this replication is inhibited when functions of both dnaJ and cbpA are impaired. In complete media, the growth of the lambda pi A66 phage (capable of replicating in E. coli dnaJ, dnaK, and grpE missense mutants at 30 degrees C), as well as efficiency of transformation by the lambda pi A66 plasmid, is significantly decreased in a dnaJ259 cbpA::kan double mutant. These results strengthen the proposal of other authors (C. Ueguchi, M. Kakeda, H. Yamada, and T. Mizuno, Proc. Natl. Acad. Sci. USA 91:1054-1058, 1994; C. Ueguchi, T. Shiozawa, M. Kakeda, H. Yamada, and T. Mizuno, J. Bacteriol. 177:3894-3896, 1995; and T. Yamashino, M. Kakeda, C. Ueguchi, and T. Mizuno, Mol. Microbiol. 13:475-483, 1994) that the cbpA gene product is a functional analog of the DnaJ chaperone in E. coli.  相似文献   

9.
In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14.  相似文献   

10.
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.  相似文献   

11.
Nonsense and insertion mutants in the relA gene of E. coli: cloning relA.   总被引:9,自引:0,他引:9  
J D Friesen  G An  N P Fiil 《Cell》1978,15(4):1187-1197
We have made use of lysogens of a specialized transducing bacteriophage, lambdapyrG+ relA+, to select nonsense (relAnon) and insertion (relAins) mutations in the relA gene. Three independent relAnon mutants were isolated on the phage. In all three, the relaxed phenotype was suppressed by supD, supE, supF or sup6. Three independent relAins mutants were isolated, all containing an insertion element (probably IS2) in an apparently identical location in the relA gene. Polyacrylamide gel electrophoretic analysis of peptides synthesized by the phages in ultraviolet lightkilled host cells revealed that no stringent factor was coded for by either the relAins or relAnon phages (the latter in a sup+ cell); stringent factor was detected when the relAnon phages were used in a similar experiment with supD or supE host cells. The relAnon and relAins mutations could be crossed in haploid form in the E. coli chromosome. These recombinants grew with a normal doubling time, had a ppGpp pool which was between 70 and 100% compared with the classical relA strain, and underwent a normal carbon source shift-down. A restriction endonuclease map of the pyrG relA region of the specialized transducing phage is presented in which the position of the insertion element (recognized by a novel Hind III-cut site) defines the position of the relA gene. This position was verified by an analysis of the structure of five plasmids formed by cloning portions of the region in the pBR322 cloning vehicle. Our results indicate that the relA gene is not an essential cellular function, that there might be a second mechanism for the synthesis of basal level ppGpp in the cell and that the sole function of the relA gene is apparently the high level ppGpp synthesis triggered in response to deacylated tRNA.  相似文献   

12.
Mutants of Myxococcus xanthus dsp defective in fibril binding.   总被引:3,自引:1,他引:2       下载免费PDF全文
The dsp mutant of Myxococcus xanthus lacks extracellular fibrils and as a result is unable to undergo cohesion, group motility, or development (J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5765-5770, 1983; J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5771-5777, 1983; R. M. Behmlander and M. Dworkin, J. Bacteriol. 173:7810-7821, 1991; L. J. Shimkets, J. Bacteriol. 166:837-841, 1986; L. J. Shimkets, J. Bacteriol. 166:842-848, 1986). However, cohesion and development can be phenotypically restored by the addition of isolated fibrils (R. M. Behmlander, Ph.D. thesis, University of Minnesota, Minneapolis, 1994; B.-Y. Chang and M. Dworkin, J. Bacteriol. 176:7190-7196, 1994). As part of our attempts to examine the interaction of fibrils and cells of M. xanthus, we have isolated a series of secondary mutants of M. xanthus dsp in which cohesion, unlike that of the parent strain, could not be rescued by the addition of isolated fibrils. Cells of M. xanthus dsp were mutagenized either by ethyl methanesulfonate or by Tn5 insertions. Mutagenized cultures were enriched by selection of those cells that could not be rescued, i.e., that failed to cohere in the presence of isolated fibrils. Seven mutants of M. xanthus dsp, designated fbd mutants, were isolated from 6,983 colonies; these represent putative fibril receptor-minus mutants. The fbd mutants, like the parent dsp mutant, still lacked fibrils, but displayed a number of unexpected properties. They regained group motility and the ability to aggregate but not the ability to form mature fruiting bodies. In addition, they partially regained the ability to form myxospores. The fbd mutant was backcrossed into the dsp mutant by Mx4 transduction. Three independently isolated transconjugants showed essentially the same properties as the fbd mutants--loss of fibril rescue of cohesion, partial restoration of myxospore morphogenesis, and restoration of group motility. These results suggest that the physical presence of fibrils is not necessary for group motility, myxospore formation, or the early aggregative stage of development. We propose, however, that the perception of fibril binding is required for normal social behavior and development. The dsp fbd mutants (from here on referred to as fbd mutants) open the possibility of isolating and characterizing a putative fibril receptor gene.  相似文献   

13.
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.  相似文献   

14.
The near-ultraviolet (300-400 nm) induced growth delay of Escherichia coli cells was compared in isogenic relA+ and relA- cells illuminated either in the stationary or the exponential phase. In the latter case: (a) the relA- strains of K12 and B/r exhibited similar maximal growth lags (65 min and 55 min respectively); (b) the maximal lags were 1.5-fold and 4-fold longer, respectively, in the isogenic relA+ strains; (c) the rate of the relA- -dependent guanosine 3',5'-bis(diphosphate) (ppGpp) accumulation was three-times lower in the K12 relA+ strain as compared to the B/r relA- strain: (d) a K12 spoT mutant having an impaired rate of ppGpp degradation had a 2-fold longer lag. On the other hand, when illumination is performed in the stationary phase, isogenic relA+ and relA- cells (B/r or K12) exhibited similar growth lags at any fluences, indicating little if any involvement of the stringent response. These data extend previous observations of T.V. Ramabhadran an J. Jagger [(1976) Proc. Natl Acad. Sci. USA, 73, 59-63] but do not support their conclusion that the stringent response is the main factor responsible for growth delay. By monitoring the intracellular level of ppGpp in relA+ spoT- and relA+ spoT+ growing cells during illumination and the subsequent growth lag we observed that the initial burst of ppGpp decreases slowly all along the lag; in all relA+ strains checked the return of ppGpp to its basal level coincides with the recovery of normal growth. We conclude that it is the accumulation of ppGpp over the basal level due either to the stringent response or to prevention of ppGpp degradation that is responsible for an amplification of the growth lag.  相似文献   

15.
16.
The influence of the relA gene on lipopolysaccharide (LPS) biosynthesis and release by Escherichia coli and Salmonella typhimurium was investigated. Similar results were obtained with both species. The incorporation of [3H]galactose into LPS by galE mutants was inhibited by at least 50% (as compared with normal growing controls) during amino acid deprivation of relA+ strains. This inhibition could be prevented by the treatment of the amino acid-deprived relA+ bacteria with chloramphenicol, a known antagonist of the stringent control mechanism. Furthermore, LPS biosynthesis was not inhibited during amino acid deprivation of isogenic relA mutant strains. These results indicate that LPS synthesis is regulated by the stringent control mechanism. Normal growing cells of both relA+ and relA strains released LPS into the culture fluid at low rates. Amino acid deprivation stimulated the rate of LPS release by relA mutants but not by relA+ bacteria. Chloramphenicol treatment markedly stimulated the release of cell-bound LPS by amino acid-deprived relA+ cells. Thus, a low rate of LPS release was characteristic of normal growth and could be increased in nongrowing cells by relaxing the control of LPS synthesis.  相似文献   

17.
18.
It is generally assumed that inhibitors of peptidoglycan biosynthesis do not kill nongrowing bacteria. An exceptional case is reported here. The addition of chloramphenicol to amino acid-deprived cultures of relA+ strains of Escherichia coli which were treated with beta-lactam antibiotics, D-cycloserine, or moenomycin resulted in lysis. This phenomenon is termed chloramphenicol-dependent lysis. To be effective, chloramphenicol had to be present at its minimum growth-inhibitory concentration (or higher). Analogs of chloramphenicol which did not bind to ribosomes were completely ineffective. Amino acid deprivation was actually not required to demonstrate chloramphenicol-dependent lysis, and cultures treated with growth-inhibitory levels of chloramphenicol alone were lysed when challenged with inhibitors of peptidoglycan synthesis. Peptidoglycan synthesis has been shown previously to be under stringent (relA+) control, and chloramphenicol is known to be an antagonist of stringent control. Thus, it is proposed that the mechanism of chloramphenicol-dependent lysis is based on the ability of chloramphenicol to relax peptidoglycan synthesis in nongrowing relA+ bacteria. This is also consistent with the observation that treatment of amino acid-deprived relA mutants with inhibitors of peptidoglycan synthesis resulted in lysis, i.e., without the mediation of chloramphenicol.  相似文献   

19.
20.
A delta tyrT::kan mutant from Escherichia coli K-12 (DTK-12) shows a transient growth lag that is caused by glycine starvation (U. Michelsen, M. Bösl, T. Dingermann, and H. Kersten, J. Bacteriol. 171:5987-5994, 1989). The same deletion, transduced into the relA1 spoT1 mutant CA274 to construct strain DTC274, caused complete growth inhibition in glucose minimal medium. Here, we show that the tyrT 5' region contains three new open reading frames in the order ORF37-->ORF34-->ORF32-->tyrT and that the delta tyrT::kan allele used previously deletes tyrT as well as a carboxy-terminal portion of ORF32. A plasmid encoding ORF32 totally complemented the inability of strain DTC274 to grow on glucose minimal medium as well as the transient glycine starvation phenomenon in DTK-12, and ORF32 was designated tgs. Partial deletion of tgs, cotransduced with the marker delta tyrT::kan, was responsible for the completely different phenotypes of the deletion mutants DTK-12 and DTC274. The deduced Tgs protein sequence showed significant homology to the PurN protein of E. coli and to enzymes with glycinamide ribonucleotide transformylase activity. We discuss whether growth inhibition in strain DTC274 may be caused by synergistic effects with the preexisting mutations relA1 and spoT1. The deduced protein sequence of ORF37 showed striking similarity to regulator response proteins and is probably a new member of this family. A spontaneous mutation in ORF37, caused by the integration of an insertion element, IS1, exhibited no phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号