首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   

2.
Abstract: Toxicologically significant amounts of inorganic lead were added to rat brain mitochondrial preparations that did not contain EDTA or Pi. The binding of the lead to the mitochondria was measured by anodic stripping voltometry. In the presence of lead, the respiratory control ratios decreased, implying a decrease in the degree of dependence of respiration on a phosphate acceptor. Nucleotide contents were also measured, and in the presence of inorganic lead the actual amounts of ATP formed from ADP were found to be significantly decreased as well.  相似文献   

3.
The exposure of detached leaves of C3 plants (pea, barley) and C4 plant (maize) to 5 m M Pb (NO3)2 for 24 h caused a reduction of their photosynthetic activity by 40–60%, whereas the respiratory rate was stimulated by 20–50%. Mitochondria isolated from Pb2+-treated pea leaves oxidized substrates (glycine, succinate, malate) at higher rates than mitochondria from control leaves. The respiratory control (RCR) and the ADP/O ratio were not affected. Pb2+ caused an increase in ATP content and the ATP/ADP ratio in pea and maize leaves. Rapid fractionation of barley protoplasts incubated at low and high CO2 conditions, indicated that the increased ATP/ADP ratio in Pb2+-treated leaves resulted mainly from the production of mitochondrial ATP. The measurements of membrane potential of mitochondria with a TPP+-sensitive electrode further showed that mitochondria isolated from Pb2+-treated leaves had at least as high membrane potential as mitochondria from control leaves. The activity of NAD-malate dehydrogenase in the protoplasts from barley leaves treated with Pb2+ was 3-fold higher than in protoplasts from control leaves. The activities of photorespiratory enzymes NADH-hydroxypyruvate reductase and glycolate oxidase as well as of NAD-malic enzyme were not affected. The presented data indicate that stimulation of respiration in leaves treated by lead is in a close relationship with activation of malate dehydrogenase and stimulation of the mitochondrial ATP production. Thus, respiration might fulfil a protective role during heavy metal exposure.  相似文献   

4.
Mitochondria of amoeba Acanthamoeba castellanii in addition to the conventional cytochrome pathway possess, like plant mitochondria, a cyanide-resistant alternative quinol oxidase. In mitochondria isolated from amoeba batch culture grown temporarily at low temperature (6 degrees C), higher respiration was accompanied by lower coupling parameters as compared to control culture (grown at 28 degrees C). In the presence of benzohydroxamate, respiratory rates and coupling parameters were similar in both types of mitochondria indicating that growth in cold conditions did not disturb the cytochrome pathway. Increased contribution of alternative oxidase in total mitochondrial respiration in low-temperature-grown amoeba cells was confirmed by calculation of its contribution using ADP/O measurements. Furthermore, in mitochondria from low-temperature- grown cells the content of the alternative oxidase was increased and correlated with the increase in the unstimulated and GMP-stimulated cyanide-resistant respiratory activity. A possible physiological role of higher activity of alternative oxidase as response to growth at a low temperature in unicellular organisms, such as amoeba, is discussed.  相似文献   

5.
Phosphorus-deficient Gracilaria tenuistipitata Zhang et Xia was cultured for 15 days at two different inorganic phosphate (Pi) concentrations: 3 μM (low Pi treatmenl) or 30 μM phosphate (high Pi treatment). The amount of ribulose-l,5-bisphosphate carboxy-lase/oxygenase (Rubisco), phycobiliproteins, Chl a and total soluble proteins were higher in the high Pi than in the low Pi treatment. The total N content of the low Pi plants was lower than in plants grown at high Pi concentrations whereas the amount of total C was highest in low Pi plants. The increase of Rubisco content in the high Pi treatment (3-fold) was parallel to the enhancement of the maximum photosynthetic rate which increased 5-fold. This correspondence was also found in the low Pi treatment in which Rubisco content and maximum photosynthesis did not change significantly from the initial values. The photosynthetic efficiency was also higher at high than at low Pi. The high Pi plants also showed higher dark respiration and growth rates. The data presented here suggest that marine macroalgae submitted to Pi deficiency exhibit a decrease in growth caused not only by Pi implication on energy transfer in photosynthesis and respiration, but also by the diminution of the amount of photosynthetic pigments and Rubisco.  相似文献   

6.
The activity of the alternative path of O2 consumption in detached and intact roots of barley [ Hordeum distichum (L.) Lam. cv. Maris Mink] was determined by titration with salicylhydroxamic acid (SHAM) in the presence and absence of cyanide. In the absence of cyanide, only high concentrations were inhibititory (> 5 m M ). whilst in its presence low SHAM concentrations (2.5–5.0 m M ) gave maximum inhibition: the resulting ϱ Valt plots were non-linear. A SHAM-stimulated peroxidase could readily be washed from these roots, but non-linearity cannot be explained in terms of SHAM-stimulation of this peroxidase as it is not active in the absence of an exogenous supply of NADH. In detached roots the degree of inhibition of respiration with 25 m M SHAM was nearly double the capacity of the alternative path (measured as the degree of inhibition by SHAM in the presence of cyanide), suggesting non-specific inhibition. Effects of SHAM on cytochrome path activity in intact roots were examined by reverse titration with cyanide in the presence and absence of SHAM. At 5 m M SHAM had no effect on the cytochrome path, but at 25 m M it inhibited. We conclude that the only factor causing non-linearity of ϱValt plots in barley roots is non-specific inhibition of the cytochrome path by high concentrations of SHAM; consequently only low concentrations of SHAM (2.5–5.0 m M ) are suitable for estimating alternative path activity in barley roots.  相似文献   

7.
Horn ME  Mertz D 《Plant physiology》1982,69(6):1439-1443
The respiration of dark-grown Nicotiana glutinosa L. cells in liquid suspension culture was found to be highly cyanide resistant and salicylhydroxamic acid (SHAM) sensitive, indicative of an active alternative respiratory pathway. This was especially true during the lag and logarithmic phases of the 14-day growth cycle. Mitochondria isolated from logarithmically growing cells exhibited active oxidation of malate, succinate, and exogenous NADH. Oxidation of all three substrates had an optimum pH of 6.5 and all were highly resistant to inhibited by cyanide and sensitive to SHAM. Respiratory control was exhibited by all three substrates but only if SHAM was present to block the alternative pathway and divert electrons to the phosphorylating cytochrome pathway. The cyanide-resistant oxidation of exogenous NADH has previously only been associated with Arum spadix mitochondria. Coemergence during evolution of the alternative respiratory pathway and the exogenous NADH dehydrogenase in plant mitochondria as a possible mechanism for removal of cytoplasmic NADH is proposed. Evidence is presented which suggests that mitochondrial assays should be performed at pH 6.5.  相似文献   

8.
The role of mitochondrial respiration in optimizing photosynthesis was assessed in mesophyll protoplasts of pea ( Pisum sativum L., cv. Arkel) by using low concentrations of oligomycin (an inhibitor of oxidative phosphorylation), antimycin A (inhibits cytochrome pathway of electron transport) and salicylhydroxamic acid (SHAM, an inhibitor of alternative oxidase). All three compounds decreased the rate of photosynthetic O2 evolution in mesophyll protoplasts, but did not affect chloroplast photosynthesis. The inhibition of photosynthesis by these mitochondrial inhibitors was stronger at optimal CO2 (1.0 m M NaHCO3) than that at limiting CO2 (0.1 m M NaHCO3). We conclude that mitochondrial metabolism through both cytochrome and alternative pathways is essential for optimizing photosynthesis at limiting as well as at optimal CO2. The ratios of ATP to ADP in whole protoplast extracts were hardly affected, despite the marked decrease in their photosynthetic rates by SHAM. Similarly, the decrease in the ATP/ADP ratio by oligomycin or antimycin A was more pronounced at limiting CO2 than at optimal CO2. The mitochondrial oxidative electron transport, through both cytochrome and alternative pathways, therefore akppears to be more important than oxidative phosphorylation in optimizing photosynthesis, particularly at limiting CO2 (when ATP demand is expected to be low). Our results also confirm that the alternative pathway has a significant role in contributing to the cellular ATP, when the cytochrome pathway is limited.  相似文献   

9.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

10.
ABSTRACT A study of the effect of respiratory inhibitors on O2 uptake of Euglena gracilis mitochondria, isolated from cells grown in the presence of cyanide or with ethanol as carbon source, was undertaken. The contents of cytochrome c oxidase and alternative oxidase were also determined. Inhibition of respiration by antimycin and cyanide was only partial and it was dependent on the oxidizable substrate used. Succinate oxidation was the most sensitive to cyanide whereas lactate oxidation was the most resistant. Cell growth in the presence of cyanide or with ethanol as carbon source brought about an enhanced content of alternative oxidase without a concomitant increase in cytochrome aa3 content. However, a correlation between cyanide-resistant respiration and alternative oxidase content was not found. Analysis of heme types in mitochondrial membranes revealed the absence of heme O. The data suggest the presence of an inducible alternative oxidase in Euglena mitochondria which has high resistance to cyanide and contains heme B. A close relationship between Euglena alternative oxidase and bacterial quinol oxidases containing B-type heme is proposed.  相似文献   

11.
Dark O2 consumption by the green alga Selenastrum minutum was sensitive to inhibition by the cytochrome pathway respiration inhibitor cyanide in the absence of an alternative oxidase inhibitor, consistent with previous work that suggested that this alga lacks alternative oxidase capacity. In contrast, addition of low concentrations of the cytochrome pathway inhibitor azide (50–750 μ M ) resulted in a stimulation of dark O2 consumption, while higher concentrations of azide (1–2 m M ) partially inhibited O2 consumption. Measurements of changes in cellular levels of pyruvate, malate and pyridine nucleotides upon cyanide addition were consistent with the absence of alternative oxidase capacity, and suggested that cyanide inhibition of O2 consumption was not due to nonspecific effects of cyanide. Addition of salicylhydroxamic acid (SHAM) also resulted in an increase in the rate of O2 consumption. Both azide- and SHAM-stimulated O2 consumption were sensitive to inhibition by 50 m M ascorbate or by cyanide. However, the ubiquinone analogs chloroquine and quinacrine specifically inhibited azide-stimulated O2 consumption, with only minor effects on SHAM-stimulated O2 consumption. These results suggest that azide-stimulated O2 consumption was not mediated by the previously characterized SHAM-stimulated oxidase, and are consistent with the possibility that azide-stimulated O2 consumption is mediated by a plasma membrane redox system.  相似文献   

12.
Leaf slices sampled from winter rape plants ( Brassica napus L., var. oleifera L., cv. GórczaánAski), grown in cold (5°C), showed an increase in the dark respiration rate (measured at 25°C) as compared to slices cut from control plants (grown at 20/15°C). The effect of low temperature was most pronounced after 4 days of plant growth in the cold. Oxygen uptake by control slices was 60% inhibited by 1 m M KCN and was insensitive to 2.5 m M salicylhydroxamic acid (SHAM). On the contrary, respiration of leaf slices from cold-pretreated plants was more resistant to cyanide (35% inhibition after 4 days of cold treatment) and was 30% inhibited by SHAM. The patterns of cold-induced changes in total respiratory activity and in the estimated activity of alternative pathway were similar. It seems that in leaf slices from plants grown in the cold, the cyanide-resistant, alternative pathway participates in oxygen uptake. Cold treatment of plants also brought about a 4-fold increase in the level of soluble sugars, which reached a maximum on day 4 of exposure to cold. Addition of sucrose to the incubation medium resulted in an immediate increase in oxygen uptake by slices with low endogenous sugar level. The respiration stimulated by sucrose addition was more resistant to cyanide than the basal respiration and it was inhibited by SHAM. It is concluded that the operation of the alternative pathway is responsible for the increased oxygen uptake by the cold-grown winter rape leaves and it may be induced by an increased sugar supply for respiratory processes.  相似文献   

13.
The effects of inhibitors of alternative respiration [salicylhydroxamate (SHAM) and propyl gallate (PG)] on germination, seedling growth and O2 uptake in Avena fatua L. (wild oats) were studied. SHAM did not inhibit germination or O2 uptake prior to germination. SHAM-sensitive (alternative) respiration, therefore, cannot be a pre-requisite for germination. Following germination, both chemicals inhibited seedling growth with the root being more susceptible than the shoot. SHAM concentrations that inhibited root growth by 90 to 95%, inhibited O2 uptake of 1 cm root apices by less than 15%. While sodium azide (a cytochrome-oxidase inhibitor; 1 m M ) alone inhibited O2 uptake by only 40 to 50%, in the simultaneous presence of SHAM (or PG), O2 uptake was inhibited by 90 to 99%. Thus: 1) respiration of wild oat seedling root apices is predominantly cytochrome-mediated and incomplete inhibition of O2 uptake in the presence of azide alone is due to diversion of electrons to the alternative pathway and 2) even though these roots have little alternative respiration, they maintain the capacity to support a much greater flux of electrons via this path way. SHAM and PG at concentrations (0.05 to 0.4 m M ) which inhibited O2 uptake significantly in the presence (but not in the absence) of azide had little effect on root growth suggesting that an effect(s) other than that on respiration is involved in the inhibition of root growth at higher concentrations. The effect of SHAM on wild oat root growth is not selective as it also inhibits growth of a number of crop species.  相似文献   

14.
The unicellular green alga Chlamydomonas reinhardtii Dang. displays a high capacity for salicylhydroxamic acid (SHAM)—stimulated O2 consumption, mediated by extracellular peroxidaie. Addition of exogenous NADH also resulted in stimulation of O2 consumption. The SHAM-and NADH-stimulated peroxidase activity was partially sensitive to inhibition by exogenous superoxide dismutase, ascorbate, and gentisic acid. These compounds did not inhibit O2 consumption in the absence of effectors. SHAM-and NADH-stimulated peroxidase activity also was sensitive to inhibition by cyanide, and cyanide titration curves indicated that O2 consumption by peroxidase was more cyanide-sensitive than O2 consumption by cytochrome oxidase. The differential sensitivity to cyanide was used to estimate partitioning of O2 consumption between mitochondrial respiration and extracellular peroxidase. We suggest that, despite a large capacity for peroxidase-me-diated O2 consumption, peroxidase did not consume O2 at detectable rates in the absence of effectors. Therefore, in the absence of effectors, measured rates of O2 consumption represented the rate of mitochondrial respiration .  相似文献   

15.
Unicellular green algae such as Chlamydomonas and Dunaliella excrete small amounts of glycolate during active photosynthesis. This phenomenon has been explained by the fact that these algae do not have leaf-type peroxisomes and glycolate oxidase; instead, they have a limited capacity to metabolise glycolate in their mitochondria by a membrane-associated glycolate dehydrogenase. Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase in plant and algal mitochondria, stimulates glycolate excretion by the algae or their isolated chloroplasts 5-fold. In the presence of SHAM, cells of Chlamydomonas or Dunaliella grown with high-CO2 (5% CO2 in air, v/v) or adapted with air levels of CO2 excreted glycolate at a rate of about 14 µmol glycolate mg−1 Chl h−1. Aminooxyacetate (AOA), an inhibitor of aminotransferases, also increases glycolate excretion by the algal cells or chloroplasts but at a lower rate (about 50%) than SHAM. The algal, light dependent, SHAM-sensitive glycolate oxidizing system in the chloroplasts appears to be the primary site for glycolate oxidation, and it is different and more active then the minor mitochondrial glycolate dehydrogenase.  相似文献   

16.
During the first 96 h of culture, germinating spores of the fern Sphaeropteris cooperi (F. v. Muell.) Tryon showed a gradual rise in respiratory activity to a maximum of about 6.5 μl 02 h−1 mg−1 dry wt. This was followed by a transitory decline in rate, concluded by a second respiratory rise preceding the emergence of the rhizoid after 192 h of culture. Oxygen uptake during the first 120 h of germination was insensitive to 1 m M potassium cyanide (KCN) but was inhibited by 1 m M salicylhydroxamic acid (SHAM); however, beyond this time cyanide showed increasing inhibitory effectiveness whereas SHAM became less effective. Regardless of time of application, KCN had no effect on germination. Maximum inhibition of germination by SHAM was achieved if applied up to 120 h after culture initiation, after which spores became insensitive to SHAM. Heat treatment (50°C for 90 min) during the cyanide-resistant phase of respiration (0 h–120 h) induced cyanide-sensitive respiration and completely inhibited spore germination. Elevated temperatures had little effect if applied during the cyanide-sensitive phase (beyond 120 h). Temperature inhibited spores regained their ability to germinate if maintained in culture until the cyanide-resistant pathway was restored and then subjected to a second photoinductive light treatment. These results suggest the presence and possible involvement of the cyanide-resistant, alternative respiratory pathway during germination of Sphaeropteris cooperi spores.  相似文献   

17.
The respiration of yeast-form cells of the dimorphic fungus Candida albicans became resistant to cyanide during aging treatment in the resting state. An alternative, cyanide-resistant respiratory pathway was found to develop fully in cells aged at a concentration of 0.75 X 10(9)/ml or more at 25 C, but did not appear at 5 C. Chloramphenicol did not prevent the appearance of the alternative respiratory pathway. The effects of inhibitors, salicylhydroxamic acid (SHAM) and disulfiram (tetraethylthiuram disulfide), on respiration of aged cells were examined, and results indicated that SHAM binds at a site on the alternative respiratory pathway whereas disulfiram binds at two sites, one on the conventional respiratory pathway and the other on the alternative pathway. Thus, SHAM is a more selective inhibitor of the alternative respiration of C. albicans cells. SHAM-titration of the alternative respiration revealed that less than 10% of the maximal activity of the alternative respiratory pathway was utilized under normal conditions, indicating that the alternative respiratory pathway makes a small contribution to the total respiration. It was therefore concluded that the alternative, cyanide-resistant respiratory pathway operates fully when the cyanide-sensitive, cytochrome pathway is blocked although aged cells possess both respiratory pathways.  相似文献   

18.
The effect of aluminium on respiration of wheat roots   总被引:1,自引:0,他引:1  
The effects of aluminium ions on respiration of excised root apices from wheat (Triticum aestivum L. cv. Vulcan) and on isolated mitochondria have been investigated. Addition of 75μ M aluminium to the growth medium of 4-day-old seedlings inhibited O2 uptake by excised root apices by 23 and 35% after 12 and 24 h, respectively. This decreased rate of respiration was initially caused by inhibition of the cytochrome pathway of mitochondrial electron transport. The cyanide-insensitive, alternative pathway was inhibited only after more prolonged exposure to aluminium. Mitochondria isolated from roots of aluminium-treated seedlings had reduced oxidative capacity with substrates that supply electrons to Complexes I and II, compared with mitochondria from roots of untreated control seedlings. The state 3 and state 4 rates of O2 uptake and the uncoupled rates with these substrates were also inhibited when aluminium was added directly to reaction mixtures containing mitochondria isolated from untreated plants. In contrast, when aluminium was added to reaction mixtures oxidizing exogenous NADH, state 4 O2 uptake was stimulated, whereas no effect was observed on the state 3 rate or the rate in the presence of uncoupler. The results suggest that aluminium initially affects electron flow through Complexes I and II, and that after more prolonged exposure, aluminium may also interact with other sites in mitochondria.  相似文献   

19.
Uptake of O2 by whole, detached, root systems of wheat ( Triticum aestivum L. cv. Alexandria) was titrated with salicylhydroxamic acid (SHAM) in the presence and absence of cyanide. The resulting Qall plot was non-linear indicating that SHAM was acting non-specifically. The nature of the non-specific effects was investigated in reverse titration experiments. Uptake of O2 was titrated with KCN in the presence and absence of SHAM at 1 m M and 25 m M , which yielded Qcy1 values of < 1 and > 1, respectively. The results suggest that at 25 m M , SHAM inhibits the cytochrome pathway, but at 1 m M it stimulates an O2-consuming process which is likely to be a peroxidase. A SHAM-stimulated peroxidase could easily be washed from these roots. In vitro, the peroxidase was stimulated to a similar extent by low (1 m M ) and high (25 m M ) concentrations of SHAM. Failure to inhibit with high concentrations of SHAM distinguishes this peroxidase from those bitherto eluted from root tissue. Reverse titration experiments in the presence and absence of 1 m M SHAM indicated that there were no significant side effects of SHAM in root tips. These data are supported by the negligible peroxidase activity that was washed from this root fraction. In contrast, significant side effects occurred in vivo, and substantial peroxidase activity was measured in vitro, from sections 4–6 cm and 18–20 cm behind the seminal root apex. The greatest activity was found with the 4–6 cm section which may be associated with high rates of cell wall lignification. The implications of these results for measurements of root respiration are discussed.  相似文献   

20.
Measurements of respiration were made on intact tissue and mitochondria isolated from soybean (Glycine max [L.] Merr. cv `Corsoy') cotyledons from seedlings of different ages grown in light and darkness. Effects of cyanide (KCN) and salicylhydroxamic acid (SHAM) on O2 uptake rates were determined. O2 uptake was faster in light-grown tissue and was inhibited by both KCN and SHAM in all except light-grown tissue older than 9 days. Both inhibitors stimulated O2 uptake in tissues more than 9 days old. Mitochondria in which O2 uptake was coupled to ATP synthesis were isolated from all tissues. O2 uptake by mitochondrial preparations from light- and dark-grown cotyledons was equally sensitive to KCN. Similarly, age did not affect KCN sensitivity, but sensitivity to SHAM declined with age both in the presence and absence of KCN. Estimated capacities of the cytochrome and alternative pathways of the mitochondrial preparations indicated considerably larger cytochrome than alternative pathway capacities. The cytochrome pathway capacities paralleled the state 3 mitochondrial respiration rates, which increased from day 5 to day 7 then declined thereafter. The alternative pathway capacities were not affected by light. The uncoupler, p-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), increased the flow of electrons through the cytochrome pathway at the expense of flow through the alternative pathway in isolated mitochondria. However, the combined capacities did not exceed the rate in the presence of FCCP. The results are interpreted to indicate that the stimulation of respiration by KCN and SHAM observed in the 12-day-old green cotyledons and previously observed in older soybean leaves is not explained by characteristics of the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号