首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mating-type silencing in Schizosaccharomyces pombe is brought about by cooperative interactions between cis-acting DNA sequences flanking mat2P and mat3M and the trans-acting factors, namely Swi6, Clr1-Clr4, Clr6, and Rik1. In addition, DNA repair gene rhp6, which plays a role in post-replication DNA repair and ubiquitination of proteins including histones, is also involved in silencing, albeit in a unique way; its effect on silencing and chromatin structure of the donor loci is dependent on their switching competence. Earlier, we hypothesized the existence of a mediator of Rhp6 that plays a role in reestablishment of the chromatin structure coincidentally with DNA replication associated with mating-type switching. Here we report the identification of a 22-kDa protein as an in vivo target and mediator of Rhp6 in mating-type silencing. The level of this protein is greatly elevated in sng1-1/rhp6(-) mutant and rhp6Delta as compared with wild type strain. Both the deletion and overexpression of the gene encoding this protein elicit switching-dependent loss of silencing. Furthermore, the 22-kDa protein undergoes Rhp6-dependent multiubiquitination and associates with mat2 locus during S phase in wild type cells. Interestingly, it contains a histone-fold motif similar to that of histone H2A, and like histone H2A, it interacts strongly with histone H2B in vitro. These results indicate that the 22-kDa protein, renamed as the ubiquitinated histone-like protein Uhp1, is an in vivo target/mediator of Rhp6 in silencing. Thus, regulation of association of Uhp1 with chromatin and ubiquitination followed by degradation may play a role in reestablishment of inactive chromatin structure at the silent mating-type loci.  相似文献   

2.
Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken beta-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6(+) and ubcX(+) (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6(+) or ubcX(+) enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing.  相似文献   

3.
Schizosaccharomyces pombe Rhp55 and Rhp57 are RecA-like proteins involved in double-strand break (DSB) repair. Here we demonstrate that Rhp55 and Rhp57 proteins strongly interact in vivo, similar to Saccharomyces cerevisiae Rad55p and Rad57p. Mutations in the conserved ATP-binding/hydrolysis folds of both the Rhp55 and Rhp57 proteins impaired their function in DNA repair but not in cell proliferation. However, when combined, ATPase fold mutations in Rhp55p and Rhp57p resulted in severe defects of both functions, characteristic of the deletion mutants. Yeast two-hybrid analysis also revealed other multiple in vivo interactions among S. pombe proteins involved in recombinational DNA repair. Similar to S. cerevisiae Rad51p-Rad54p, S. pombe Rhp51p and Rhp54p were found to interact. Both putative Rad52 homologs in S. pombe, Rad22p and Rti1p, were found to interact with the C-terminal region of Rhp51 protein. Moreover, Rad22p and Rti1p exhibited mutual, as well as self-, interactions. In contrast to the S. cerevisiae interacting pair Rad51p-Rad55p, S. pombe Rhp51 protein strongly interacted with Rhp57 but not with Rhp55 protein. In addition, the Rti1 and Rad22 proteins were found to form a complex with the large subunit of S. pombe RPA. Our data provide compelling evidence that most, but not all, of the protein-protein interactions found in S. cerevisiae DSB repair are evolutionarily conserved.  相似文献   

4.
5.
6.
Cell cycle events are regulated by sequential activation and inactivation of Cdk kinases. Mitotic exit is accomplished by the inactivation of mitotic Cdk kinase, which is mainly achieved by degradation of cyclins. The ubiquitin-proteasome system is involved in this process, requiring APC/C (anaphase-promoting complex/cyclosome) as a ubiquitin ligase. In Xenopus and clam oocytes, the ubiquitin-conjugating enzymes that function with APC/C have been identified as two proteins, UBC4 and UBCx/E2-C. Previously we reported that the fission yeast ubiquitin-conjugating enzyme UbcP4/Ubc11, a homologue of UBCx/E2-C, is required for mitotic transition. Here we show that the other fission yeast ubiquitin-conjugating enzyme, UbcP1/Ubc4, which is homologous to UBC4, is also required for mitotic transition in the same manner as UbcP4/Ubc11. Both ubiquitin-conjugating enzymes are essential for cell division and directly required for the degradation of mitotic cyclin Cdc13. They function nonredundantly in the ubiquitination of CDC13 because a defect in ubcP1/ubc4+ cannot be suppressed by high expression of UbcP4/Ubc11 and a defect in ubcP4/ubc11+ cannot be suppressed by high expression of UbcP1/Ubc4. In vivo analysis of the ubiquitinated state of Cdc13 shows that the ubiquitin chains on Cdc13 were short in ubcP1/ubc4 mutant cells while ubiquitinated Cdc13 was totally reduced in ubcP4/ubc11 mutant cells. Taken together, these results indicate that the two ubiquitin-conjugating enzymes play distinct and essential roles in the degradation of mitotic cyclin Cdc13, with the UbcP4/Ubc11-pathway initiating ubiquitination of Cdc13 and the UbcP1/Ubc4-pathway elongating the short ubiquitin chains on Cdc13.  相似文献   

7.
8.
Although DNA replication has been thought to play an important role in the silencing of mating type loci in Saccharomyces cerevisiae, recent studies indicate that silencing can be decoupled from replication. In Schizosaccharomyces pombe, mating type silencing is brought about by the trans-acting proteins, namely Swi6, Clr1-Clr4, and Rhp6, in cooperation with the cis-acting silencers. The latter contain an autonomous replication sequence, suggesting that DNA replication may be critical for silencing in S. pombe. To investigate the connection between DNA replication and silencing in S. pombe, we analyzed several temperature-sensitive mutants of DNA polymerase alpha. We find that one such mutant, swi7H4, exhibits silencing defects at mat, centromere, and telomere loci. This effect is independent of the checkpoint and replication defects of the mutant. Interestingly, the extent of the silencing defect in the swi7H4 mutant at the silent mat2 locus is further enhanced in absence of the cis-acting, centromere-proximal silencer. The chromodomain protein Swi6, which is required for silencing and is localized to mat and other heterochromatin loci, interacts with DNA polymerase alpha in vivo and in vitro in wild type cells. However, it does not interact with the mutant pol alpha and is delocalized away from the silent mat loci in the mutant. Our results demonstrate a role of DNA polymerase alpha in the establishment of silencing. We propose a recruitment model for the coupling of DNA replication with the establishment of silencing by the chromodomain protein Swi6, which may be applicable to higher eukaryotes.  相似文献   

9.
Takeda K  Yanagida M 《Cell》2005,122(3):393-405
While proteasome is central to the degradation of cellular ubiquitinated proteins, the control of its nuclear function is barely understood. Here we show that the fission yeast ubiquitin-conjugating Rhp6/Ubc2/Rad6 and ligating enzymes Ubr1 are responsible for nuclear enrichment of proteasome through the function of Cut8, a nuclear envelope protein. Cut8 is an Rhp6 substrate that physically interacts with and tethers proteasome. Nonubiquitinatable K-all-R Cut8 weakly interacts with proteasome and fails to enrich nuclear proteasome. Consistently, the nuclear enrichment of proteasome also fails in rhp6 and ubr1 null mutants. Further, cut8 null and cut8 K-all-R mutants are hypersensitive to DNA damage, probably due to the paucity of nuclear proteasome. Thus, Rhp6 enhances the retention of nuclear proteasome through regulating Cut8. The short-lived nature of Cut8 is crucial for feedback enrichment of the proteasome within the nucleus. This is likely to be a conserved mechanism as we describe a Cut8 homolog in flies.  相似文献   

10.
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein RadS1 filament formation. As shown in this work, a novel RAD51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20+ that controls this pathway was identified. The overexpression of dds20+ partially suppresses defects of mutant rhp55delta in DNA repair. Cells of dds20delta manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20+ is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51 (Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.  相似文献   

11.
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.  相似文献   

12.
13.
14.
15.
16.
Recent studies have indicated that the DNA replication machinery is coupled to silencing of mating-type loci in the budding yeast Saccharomyces cerevisiae, and a similar silencing mechanism may operate in the distantly related yeast Schizosaccharomyces pombe. Regarding gene regulation, an important function of DNA replication may be in coupling of faithful chromatin assembly to reestablishment of the parental states of gene expression in daughter cells. We have been interested in isolating mutants that are defective in this hypothesized coupling. An S. pombe mutant fortuitously isolated from a screen for temperature-sensitive growth and silencing phenotype exhibited a novel defect in silencing that was dependent on the switching competence of the mating-type loci, a property that differentiates this mutant from other silencing mutants of S. pombe as well as of S. cerevisiae. This unique mutant phenotype defined a locus which we named sng1 (for silencing not governed). Chromatin analysis revealed a switching-dependent unfolding of the donor loci mat2P and mat3M in the sng1 mutant, as indicated by increased accessibility to the in vivo-expressed Escherichia coli dam methylase. Unexpectedly, cloning and sequencing identified the gene as the previously isolated DNA repair gene rhp6. RAD6, an rhp6 homolog in S. cerevisiae, is required for postreplication DNA repair and ubiquitination of histones H2A and H2B. This study implicates the Rad6/rhp6 protein in gene regulation and, more importantly, suggests that a transient window of opportunity exists to ensure the remodeling of chromatin structure during chromosome replication and recombination. We propose that the effects of the sng1/rhp6 mutation on silencing are indirect consequences of changes in chromatin structure.  相似文献   

17.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

18.
19.
AJS. Klar  M. J. Bonaduce 《Genetics》1991,129(4):1033-1042
Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 "hot spot" for transposition should be contrasted with the "cold spot" of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination.  相似文献   

20.
Eukaryotic replication termination generally occurs randomly in the region between two active origins. However, termination, or pausing of the replication forks has been observed at specific loci. Recently, a site-specific terminator of replication named RTS1 was shown to play an important role in mating-type switching in Schizosaccharomyces pombe. Mating-type switching in S. pombe relies on an imprinting event that chemically modifies one strand of the DNA at the mating-type locus mat1. This imprint, that is formed only when mat1 is replicated in a specific direction, marks the DNA for a rearrangement leading to mating-type switching. The RTS1 element ensures that mat1 is replicated in the correct direction for imprinting and initiation of the subsequent mating-type switching event. This is the first replication terminator shown to play a role in cellular differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号