首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We asked whether cyclooxygenase (COX) activity controls the renin-angiotensin system in the postnatal period. During kidney development, renin peaked at postnatal days 0-1 at the mRNA, tissue protein [renal renin concentration (RRC)], and plasma renin concentration (PRC) levels and was widely expressed along preglomerular vessels. PRC and renin mRNA expression was elevated until weaning in the 4th postnatal week compared with adult rats. Renocortical COX-2 was restricted to Tamm-Horsfall protein-positive cells in the thick ascending limb of Henle's loop, and cortical COX-2 mRNA and protein expression were elevated along with PRC in the 2nd and 3rd postnatal weeks. In contrast, cortical COX-1 expression was constant, but medullary COX-1 expression increased eightfold from the 1st to 4th postnatal week. A COX-2-selective blocker, parecoxib, and a nonselective blocker, indomethacin, given in a period with COX-2 induction from postnatal day 6 to day 12, markedly decreased PRC, but not renin mRNA or RRC. Inhibition of angiotensin AT(1) receptors by candesartan from postnatal day 1 to day 5 increased COX-2 mRNA (2.5-fold), protein, and distribution, renin mRNA (7-fold) and PRC (20- to 70-fold), but had no influence on COX-1 mRNA. Thus, due to very low levels of expression, COX-2 is unlikely to be responsible for the birth peak of renin, but COX-2 activity supports renin secretion later in the suckling period. ANG II negatively feeds back on renocortical COX-2 expression in the 1st postnatal days with high activity of the renin system. We suggest that suckling in the rat is correlated to an enhanced, COX-2-mediated, secretory activity of renin-producing juxtaglomerular cells.  相似文献   

2.
Previous studies have suggested that thyroid hormone influences maturation of the renin-angiotensin system (RAS) and cardiovascular function in the late-gestation fetal sheep. To further examine the importance of thyroid hormone in this regard, we used the technique of thyroidectomy (TX) to remove endogenous thyroid hormone from the circulation and then replaced it with physiological amounts of exogenous thyroxine. We hypothesized that the previously observed changes in RAS activity and cardiovascular function associated with TX would be normalized. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. After 3 days of recovery, TX fetuses were continuously intravenously infused with thyroxine until delivery by cesarean section close to term (around 138 dGA). Immediately before necropsy, fetuses were infused with isoproterenol, and the hemodynamic responses were noted. Thyroid hormone replacement normalized not only plasma triiodothyronine (T3) and thyroxine (T4) levels but also the TX-induced decreases in renal renin mRNA and renal renin content. Renal ANG II subtype receptor expression levels were also normalized for both mRNA and protein. Decreased basal heat rate and systolic blood pressure associated with TX returned to normal following replacement; however, changes in mean blood pressure and isoproterenol-induced changes in mean blood pressure were not altered. These findings demonstrate that replacement of thyroid hormone in hypothyroid sheep fetuses can restore renal ANG II receptor and renin expression and secretion to normal.  相似文献   

3.
Prostaglandins have been hypothesized to have several mechanistic functions in sympathetically mediated release of renin. The rabbit renal cortical slice system was chosen to examine the prostaglandin dependency of renin release directly stimulated by either a direct adenylate cyclase activator, forskolin, or a beta-agonist, isoproterenol. In this study, we demonstrate that with forskolin (1 X 10(-5) M) or isoproterenol (1 X 10(-6) M), renin release was elevated 2-3 fold above control, and that this increase was shown to accompany a substantial increase in the tissue levels of cAMP (19.5 fold and 3.5 fold respectively). We also demonstrate that the increase in renin release produced by these compounds was not inhibited by cyclooxygenase inhibitors, indomethacin (25 microM) or eicosatetraynoic acid (30 micrograms/ml), nor was it inhibited by the selective prostacyclin synthesis inhibitor, U-51605 (30 micrograms/ml). Each of these inhibitors was demonstrated to block the synthesis of prostaglandins in the cortical slices at the concentrations used. Thus we propose that prostaglandins do not play a role in the induction of renin release resulting from elevated cyclic nucleotide levels or beta-adrenergic stimulation.  相似文献   

4.
We imposed a sustained reduction in glucose supply to late-gestation fetal sheep to see whether the reduction in glucose and insulin levels affected renal growth, renin expression and synthesis, and renal function. Maternal glucose concentrations were lowered to 1.7-1.9 mmol/L for 12-13 days by i.v. insulin infusion (n = 9, 121 days gestation, term = 150 days). Control ewes (n = 7) received vehicle. Maternal and fetal glucose concentrations were 40% and 31% lower than in controls (p < 0.001), respectively. Fetal plasma insulin levels fell 36% +/- 7% by day 7 (p < 0.05); IGF-I levels were unchanged. Arterial PO2 and pH increased and PCO2 fell (p < 0.05). Renal function was largely unaffected. Longitudinal growth was 28% slower and spleen weights were 36% smaller (p < 0.05); body and kidney weights were not affected. Renal renin levels and renin, angiotensinogen, and angiotensin receptor mRNA levels were similar to those of controls. Plasma renin levels increased from 2.1 +/- 0.6 to 7.6 +/- 2.8 ng angiotensin I.mL-1.h-1 (p = 0.01). Thus reductions in fetal glucose and insulin levels in late gestation that were sufficient to retard skeletal growth had no effect on kidney growth or function or the renal renin-angiotensin system, possibly because IGF-I levels were not reduced. There was, however, increased activity of the circulating renin-angiotensin system similar to that seen during insulin-induced hypoglycaemia.  相似文献   

5.
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion. Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.  相似文献   

6.
Prostaglandins have been hypothesized to have several mechanistic functions in sympathetically mediated release of renin. The rabbit renal cortical slice system was chosen to examine the prostaglandin dependency of renin release directly stimulated by either a direct adenylate cyclase activator, forskolin, or a β-agonist, isoproterenol. In this study, we demonstrate that with forskolin (1 × 10−5M) or isoproterenol (1 × 10−6M), renin release was elevated 2–3 fold above control, and that this increase was shown to accompany a substantial increase in the tissue levels f cAMP (19.5 fold and 3.5 fold respectively). We also demonstrate that the increase in renin release produced by these compounds was not inhibited by cyclooxygenase inhibitors, indomethacin (25 uM) or eicosatetraynoic acid (30 ug/ml), nor was it inhibited by the selective prostacyclin synthesis inhibitor, U-51605 (30 ug/ml). Each of these inhibitors was demonstrated to block the synthesis of prostaglandins in the cortical slices at the concentrations used. Thus we propose that prostaglandins do not play a role in the induction of renin release resulting from elevated cyclic nucleotide levels or β-adrenergic stimulation.  相似文献   

7.
Fetal renin-angiotensin system (RAS) activity is developmentally regulated, increasing in late gestation toward term. At the same time, fetal hemodynamic parameters change, with blood pressure increasing and heart rate decreasing. During this period, fetal plasma thyroid hormone concentrations also increase significantly. In this study we utilized the technique of thyroidectomy (TX), which removes thyroid hormone from the circulation, to investigate the importance of thyroid hormone on the developmental changes in the RAS (in plasma, kidney, heart, and lung) and hemodynamic regulation in fetal sheep. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. Immediately before necropsy ( approximately 137 dGA), fetuses were infused with isoproterenol and the hemodynamic responses were noted. TX significantly decreased plasma thyroid hormone concentrations and renal renin mRNA and renal active renin levels but did not change fetal plasma active renin levels. TX decreased both angiotensin II receptor subtype 1 (AT1) mRNA and protein levels in kidney and lung but not in the left ventricle. TX also was associated with increased ANG II receptor subtype 2 (AT2) mRNA and protein at the 44-kDa band in kidney, whereas AT2 protein was decreased at the 78-kDa level in kidney and lung tissue only. TX fetuses had significantly lower basal mean arterial blood pressures (MAP) and heart rates than controls. Isoproterenol infusion decreased MAP in TX fetuses. These findings support the hypothesis that thyroid hormone is important in modulating maturation of RAS and cardiovascular function in the late-gestation fetal sheep.  相似文献   

8.
The activity of the renin-angiotensin system (RAS) increases significantly in the late-gestation fetal sheep. Fetal cortisol is also increased during this time, and it is thought that the increase in cortisol may modulate the RAS changes. Previous studies have examined the effects of cortisol infusion on RAS activity, but the effects of blocking the peripartum increase in cortisol concentrations on the developmental changes in the RAS are not known. Therefore, we utilized the technique of hypothalamic-pituitary disconnection (HPD), which prevents the cortisol surge from occurring, to investigate the importance of the late-gestation increase in cortisol on the ontogenic changes in RAS activity. HPD of fetal sheep was performed at 120 days of gestational age (dGA), and fetuses were delivered between 135 and 139 dGA. Control fetuses were sham operated. HPD blocked the late-gestation cortisol increase but did not alter renal renin mRNA, renal renin or prorenin protein content, nor plasma renin levels compared with sham operated. However, HPD fetuses had increased ANG II receptor subtype 1 (AT1) mRNA and protein expression in the kidney and lungs. ANG II receptor subtype 2 (AT2) expression was not altered in these tissues at either mRNA or protein level. HPD did not change AT1 or AT2 mRNA in the left ventricle but did result in decreased protein levels for both receptors. These studies demonstrate that blockade of the naturally occurring increase in fetal cortisol concentration in late gestation is associated with tissue-specific alterations in expression of AT1 and AT2 receptors. These changes may impact on fetal tissue maturation and hence have consequences in postnatal life.  相似文献   

9.
To determine the role of the renal nerves on renin secretion and expression in the mature ovine fetus, we performed bilateral renal denervation on eight fetuses of time-dated pregnant ewes (126.8 +/- 0.6 days gestation) and compared renin in them to seven fetuses that underwent sham denervation (126.7 +/- 0.6 days gestation). Fetal arterial and venous catheters were implanted, and after 5-7 days of recovery isoproterenol was infused. Plasma active renin was lower in denervated animals than in intact animals under basal conditions and at each dose of isoproterenol. Plasma prorenin levels were lower in denervated fetuses but unaffected by isoproterenol. Denervation did not change renal renin, prorenin, or renin mRNA, but it did block isoproterenol-induced increases in renin mRNA in renocortical cells in vitro. We conclude that the renal nerves are required for renin secretory mechanisms and responsiveness of renin mRNA to beta-adrenergic stimulation but not for the expression of renin in the fetal kidney. We propose that one or more of the factors that maintain renin expression in the perinatal period may be absent or may be replaced by the renal nerves in the adult.  相似文献   

10.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

11.
Cyclooxygenase-2 (COX-2) is a recently discovered isoform of cyclooxygenase that is inducible by various types of inflammatory stimuli. Although this enzyme is considered to play a major role in inflammation processes by catalyzing the production of prostaglandins, the precise location, distribution, and regulation of prostaglandin synthesis remains unclear in several tissues. Using in situ hybridization histochemistry, we investigated the induction of COX-1 and COX-2 mRNA expression after systemic administration of a pyrogen, lipopolysaccharide (LPS), in kidney and adrenal gland in the rat. The COX-2 mRNA signals dramatically increased 1 h after LPS treatment in the kidney outer medulla and adrenal cortex, where almost no or little expression was observed in nontreated animals, and returned to control levels within 24 h. COX-2 mRNA levels increased in the kidney inner medulla 6 h after treatment. There was also a significant increase in mRNA levels in the kidney cortex and adrenal medulla. On the other hand, COX-1 mRNA levels did not show any detectable changes except in the kidney inner medulla, where a significant downregulation of mRNA expression was observed after LPS treatment. Light and electron immunocytochemistry using COX-2 antibodies showed that strong COX-2 immunoreactivity was localized to certain cortical cells of the thick ascending limb of Henle. In addition, based on double-staining with antiserum to nitric oxide synthase (NOS) four further cell populations could be identified in kidney cortex, including weakly COX-2-positive, NOS-positive macula densa cells. After LPS treatment, changes in COX-2 immunoreactivity could be observed in interstitial cells in the kidney medulla and in inner cortical cells in the adrenal gland. These results show that COX-2 is a highly induced enzyme that can be up-regulated in specific cell populations in kidney and adrenal gland in response to inflammation, leading to the elevated levels of prostaglandins seen during fever. In contrast COX-1 mRNA levels remained unchanged in this experimental situation, except for a decrease in kidney inner medulla.  相似文献   

12.
Injection of rats either with diazoxide (25 mg/kg iv), isoproterenol (0.33 mg/kg sc), or hydralazine (HDZ) (10 mg/kg ip) decreased arterial blood pressure from approximately 120 to 70-80 mmHg and stimulated renin secretion. However, diazoxide and isoproterenol treatments each stimulated water ingestion, whereas HDZ treatment did not. HDZ treatment did not reduce water intake evoked by systemic injection of hypertonic saline or 20% polyethylene glycol solution or by 24-h water deprivation, suggesting that HDZ treatment did not interfere with drinking behavior. In contrast, HDZ treatment markedly reduced water intake evoked by injection of diazoxide or isoproterenol or by intravenous infusion of renin. Furthermore, a highly significant correlation was observed when plasma ANG II levels were plotted as a function of plasma renin activity after intravenous infusion of renin and after diazoxide and isoproterenol treatments. However, values obtained after HDZ treatment alone or in combination with intravenous infusion of renin did not fall near the 99% confidence interval of the regression line, suggesting that HDZ treatment blocks ANG II production and/or promotes its clearance. Thus rats apparently do not increase water intake after HDZ treatment, because this drug interferes with the renin-angiotensin system. These results provide further evidence that arterial hypotension evokes thirst in rats predominantly by activation of the renin-angiotensin system.  相似文献   

13.
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.  相似文献   

14.
1. Renal renin activity, Na and K plasma urinary levels were studied in Testudo hermanni after salted diet, saline solution administration and furosemide injection. 2. Salt loading depressed renal renin activity whereas injection of the diuretic resulted in sodium loss and enhanced renal renin activity. 3. Results lead one to conclude the presence of a renin-angiotensin system with a direct action upon osmoregulation in these terrestrial chelonians.  相似文献   

15.
Renal and cardiovascular responses to an intravenous infusion of ANG II (1 microg/h) or saline for 3 days were examined in ovine fetuses at midgestation (75-85 days of gestation, term 150 days). ANG II caused an increase in fetal blood pressure (36 +/- 2 to 44 +/- 3 mmHg) and urine flow rate (8 +/- 2 to a maximum of 18 +/- 6 ml/h). Plasma renin concentrations decreased in ANG II-infused fetuses. Fetal fluids (amniotic and allantoic) did not differ in volume or composition between the groups when measured at postmortem. There was no difference in the expression levels of the mRNA for the angiotensin (AT(1) or AT(2)) receptors between the two groups when measured by an RNase protection assay. However, there was a significant decline in renin and AT(1) receptor gene expression when measured by a real-time polymerase chain reaction method. These results indicate that ANG II is diuretic and pressor when infused at midgestation. ANG II can feedback to decrease renin secretion by the fetal kidney, and this may occur by decreased renin gene expression.  相似文献   

16.
The adipose renin-angiotensin system (RAS) has been assigned to participate in the control of adipose tissue development and in the pathogenesis of obesity-related hypertension. In adipose cells, the biological responses to beta-adrenergic stimulation are mediated by an increase in intracellular cAMP. Because cAMP is known to promote adipogenesis and because an association exists between body fat mass, hypertension, and increased sympathetic stimulation, we examined the influence of cAMP on angiotensinogen (ATG) expression and secretion in rat adipose tissue. Exposure of primary cultured differentiated preadipocytes to the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) or cAMP-stimulating agents (forskolin and IBMX) results in a significant increase in ATG mRNA levels. In adipose tissue fragments, 8-BrcAMP also increases ATG mRNA levels and protein secretion, but not in the presence of the protein kinase A inhibitor H89. The addition of isoproterenol, known to stimulate the synthesis of intracellular cAMP via beta-adrenoreceptors, had the same stimulatory effect on ATG expression and secretion. These results indicate that cAMP in vitro upregulates ATG expression and secretion in rat adipose tissue via the protein kinase A-dependent pathway. Further studies are required to determine whether this regulatory pathway is activated in human obesity, where increased sympathetic tone is frequently observed, and to elucidate the importance of adipose ATG to the elevated blood pressure observed in this pathological state.  相似文献   

17.
The adrenergic regulation of renin secretion was studied in renal cortical slices from control and pertussis toxin-treated rats. Pertussis toxin was used to study the role of adenylate cyclase in the control of renin release. It was observed that isoproterenol and epinephrine stimulated renin secretion and that clonidine decreased both basal and isoproterenol-stimulated renin secretion in the control group. Pertussis toxin: a) increased significantly basal renin secretion, b) displaced to the left the concentration-response curve for isoproterenol and epinephrine and magnified the response to epinephrine and c) abolished the inhibitory effect of clonidine on renin secretion. This work confirms our previous results obtained in vivo and suggests a direct effect of pertussis toxin on the cells that secrete renin.  相似文献   

18.
Salt restriction leads to parallel increases of renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) gene expression in the juxtaglomerular apparatus of rat kidneys. Because the upregulation of these genes is strongly enhanced if salt restriction is combined with inhibition of the renin-angiotensin-aldosterone system, our study aimed to find out whether the juxtaglomerular expressions of renin, COX-2, and nNOS are subject to a common direct negative feedback control by ANG II. For this purpose, male Sprague-Dawley rats were fed a low-salt diet (0.02% wt/wt) with or without additional treatment with the ANG I-converting enzyme (ACE) inhibitor ramipril (10 mg x kg body wt(-1) x day(-1)) for 1 wk, and renocortical renin, COX-2, and nNOS mRNAs were assayed. To narrow down possible indirect effects of the ACE inhibitor that may result from insufficient aldosterone production, the animals received mineralocorticoid substitution with fludrocortisone (6 mg. kg body wt(-1) x day(-1)). Thus mineralocorticoid substitution prevented the fall of systolic blood pressure and of glomerular filtration induced by ramipril in rats on low-salt diet. Although fludrocortisone had no effect on basal renin, COX-2, and nNOS mRNA, it clearly attenuated the threefold increases of both renin and COX-2 mRNA in response to low-salt diet. In rats on low-salt diet, ramipril further increased renin mRNA ninefold, COX-2 mRNA fourfold, and nNOS 2.5-fold in the absence of fludrocortisone. In the presence of fludrocortisone, ramipril increased renin mRNA 10-fold, COX-2 mRNA 2.5-fold, and nNOS mRNA 2.5-fold. These data indicate that mineralocorticoid substitution lowers the overall expression of juxtaglomerular renin and COX-2 during low-salt intake and attenuates a further rise of COX-2 expression by ACE inhibition, but it does not change the stimulatory effect of ACE inhibition on renin and nNOS expression. We conclude that the expression of renin, COX-2, and nNOS in the juxtaglomerular apparatus during low-salt diet is markedly limited by a direct feedback inhibition through ANG II.  相似文献   

19.
The hormone-sensitive adenylyl cyclase system is under dual control, receiving both stimulatory and inhibitory inputs. Guanine nucleotide-binding regulatory proteins (G-proteins) transduce signals from cell surface receptors to effectors such as adenylyl cyclase. Hormonal stimulation is propagated via Gs, inhibition by Gi. Persistent (24-h) activation of the stimulatory pathway of adenylyl cyclase by the diterpene forskolin or the beta-adrenergic agonist isoproterenol in S49 mouse lymphoma cells enhanced the effects of somatostatin mediated via the inhibitory pathway of adenylyl cyclase. Stimulating cells with forskolin or isoproterenol for 24 h resulted in a 3-fold increase in the steady-state levels of Gi alpha 2 and a 25% decline in Gs alpha, as quantified by immunoblotting. Within 12 h of stimulation of adenylyl cyclase, Gi alpha 2 mRNA levels increased 4-fold, measured by DNA-excess solution hybridization. Gs alpha mRNA levels, in contrast, increased initially (25%), but then declined to 75% of control. In S49 variants that lack functional protein kinase A (kin-), stimulation by isoproterenol failed to alter Gi alpha 2 expression at either the protein or the mRNA levels. A 3-fold increase in relative synthesis rate and no change in the half-life (approximately 80 h) of Gi alpha 2 was observed in response to forskolin stimulation. Although Gs alpha synthesis increased (70%) modestly in response to forskolin stimulation, the half-life of Gs alpha actually decreased from 55 h in naive cells to 34 h in treated cells. Thus, the two G-protein-mediated pathways controlling adenylyl cyclase display "cross-regulation." Persistent activation of the stimulatory pathway increases Gi alpha 2 mRNA and expression. Transiently elevated Gs alpha mRNA levels are counterbalanced by a reduction in the half-life of the protein.  相似文献   

20.
Imig JD  Zhao X  Orengo SR  Dipp S  El-Dahr SS 《Peptides》2003,24(8):1141-1147
Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2 and renin gene expression. Kidney COX-2 mRNA and protein levels were significantly lower in B2R-/- mice by 40-50%. On the other hand, renal COX-1 levels were similar in B2R-/- and +/+ mice. Renal renin protein was 61% lower in B2R-/- compared to B2R+/+ mice. This was accompanied by a significant reduction in renin mRNA levels in B2R-/- mice. Likewise, intrarenal angiotensin I levels were significantly lower in B2R-/- mice compared to B2R+/+ mice. In contrast, kidney angiotensin II levels were not different and averaged 261+/-16 and 266+/-15fmol/g in B2R+/+ and B2R-/- mice, respectively. Kidney angiotensinogen, AT1 receptor and ACE activity were not different between B2R+/+ and B2R-/- mice. The results of these studies demonstrate suppression of renal renin synthesis in mice lacking the bradykinin B2R and support the notion that B2R regulation of COX-2 participates in the steady-state control of renin gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号