首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autonomic nervous control of heart rate was studied in voluntarily diving ducks (Aythya affinis). Ducks were injected with the muscarinic blocker atropine, the beta-adrenergic blocker nadolol, the beta-adrenergic agonist isoproterenol, and a combination of both atropine and nadolol. Saline injection was used as a control treatment. The reduction in heart rate (from the predive level) normally seen during a dive was abolished by atropine. Nadolol reduced heart rate during all phases of diving activity-predive, dive, and postdive-indicating that sympathetic output to the heart was not withdrawn during diving. Isoproterenol increased heart rate before, during, and after the dive, although the proportional increase in heart rate was not as high during the dive as compared with the increase in routine heart rate or heart rate during the predive or postdive phase. The parasympathetic system predominates in the control of heart rate during diving despite the maintenance of efferent sympathetic influences to the heart, perhaps due to accentuated antagonism between the two branches of the autonomic nervous system.  相似文献   

2.
3.
Heart rate variability during the head-up tilt test (HUT) was investigated using an automated setup of dynamic positioning in the gravity field. The wavelet theory was applied to find the dynamics of changes in the spectral properties of rhythmograms during the transitional steps of HUT. Quantitative parameters (spectral integrals, instantaneous maximal frequencies, nonstationarity factors) that describe the transients of such nonstationary HUT were calculated.  相似文献   

4.
Two symbolic indexes, the percentage of sequences characterized by three heart periods with no significant variations (0V%) and that with two significant unlike variations (2UV%), have been found to reflect changes in sympathetic and vagal modulations, respectively. We tested the hypothesis that symbolic indexes may track the gradual shift of the cardiac autonomic modulation during an incremental head-up tilt test. Symbolic analysis was carried out over heart period variability series (250 cardiac beats) derived from ECG recordings during a graded head-up tilt test (0, 15, 30, 45, 60, 75, and 90 degrees ) in 17 healthy subjects. The percentage of subjects showing a significant linear correlation (Spearman rank-order correlation) with tilt angles was utilized to evaluate the performance of symbolic analysis. Spectral analysis was carried out for comparison over the same series. 0V% progressively increased with tilt angles, whereas 2UV% gradually decreased. The decline of 2UV% was greater than the increase of 0V% at low tilt angles. Linear correlation with tilt angles was exhibited in a greater percentage of subjects for 0V% and 2UV% than for any spectral index. Our findings suggest that symbolic analysis performed better than spectral analysis and, thus, is a suitable methodology for assessment of the subtle changes of cardiac autonomic modulation induced by a graded head-up tilt test. Moreover, symbolic analysis indicates that the changes of cardiac sympathetic and vagal modulations observed during this protocol were reciprocal but characterized by different absolute magnitudes.  相似文献   

5.
目的:研究糖尿病人植物神经病变与心率变异的关系。对象:正常对照组和根据临床有无糖尿病神经病变(DAN)分组的糖尿病病人,方法:应用24小时动态心电图对正常和糖尿病人进行心率变异的线性,非线性散点图和非线性定量参数分析,结果:单纯糖尿病组SDNN,SDANN和PNN50低于正常组(P〈0.05);糖尿病+DAN组各项线性时域分析指标均低于正常和单纯糖尿病组(P〈0.01-0.001),散点图分析结果  相似文献   

6.
The purpose of this study was to determine if heart rate recovery (HRR) and heart rate variability (HRV) are related to maximal aerobic fitness and selected body composition measurements. Fifty men (age = 21.9 ± 3.0 years, height = 180.8 ± 7.2 cm, weight = 80.4 ± 9.1 kg, volunteered to participate in this study. For each subject, body mass index (BMI), waist circumference (WC), and the sum of skinfolds across the chest, abdomen, and thigh regions (SUMSF) were recorded. Heart rate variability (HRV) was assessed during a 5-minute period while the subjects rested in a supine position. The following frequency domain parameters of HRV were recorded: normalized high-frequency power (HFnu), and low-frequency to high-frequency power ratio (LF:HF). To determine maximal aerobic fitness (i.e., VO2max), each subject performed a maximal graded exercise test on a treadmill. Heart rate recovery was recorded 1 (HRR1) and 2 (HRR2) minutes during a cool-down period. Mean VO2max and BMI for all the subjects were 49.5 ± 7.5 ml·kg(-1)·min(-1) and 24.7 ± 2.2 kg·m(-2), respectively. Although VO2max, WC, and SUMSF was each significantly correlated to HRR and HRV, only SUMSF had a significant independent correlation to HRR1, HRR2, HFnu, LF:HF (p < 0.01). The results of the regression procedure showed that SUMSF accounted for the greatest variance in HRR1, HRR2, HFnu, and LF:HF (p < 0.01). The results of this study suggest that cardiovascular autonomic modulation is significantly related to maximal aerobic fitness and body composition. However, SUMSF appears to have the strongest independent relationship with HRR and HRV, compared to other body composition parameters and VO2max.  相似文献   

7.
A model of the components of autonomic control of heart rate was developed and used for the evaluation of quantitative contribution of sympathetic and vagal tone to cardiac function. In conscious rabbits, sequential inhibition of muscarinic and beta receptors was produced and the relative contributions of vagal and sympathetic tone were characterized. Based on the model, the magnitude of presynaptic interaction between the vagal and sympathetic nerve endings was evaluated. From data in the literature, similar analysis of the control of heart rate was performed for the rat, dog, and human subject and compared with that of the rabbit. The results show that the resting rabbit heart is under less vagal tone than sympathetic tone as compared with other species. The effects of acute administration of amiodarone on the sympathetic and parasympathetic control of heart rate as well as intrinsic heart rate were investigated. Amiodarone decreased the heart rate, which resulted from a direct effect on the sinoatrial (SA) node. In addition, it attenuated the vagal as well as the sympathetic effects on the SA node. The effect on vagal component was greater. Further, the effects of other antiarrhythmic drugs on the electrocardiographic PP and PR intervals were studied. The usefulness of this model for the analysis of the effects of antiarrhythmic drugs is presented.  相似文献   

8.
9.

Background  

Cardiac autonomic neuropathy (CAN) in diabetes has been called a "silent killer", because so few patients realize that they suffer from it, and yet its effect can be lethal. Early sub clinical detection of CAN and intervention are of prime importance for risk stratification in preventing sudden death due to silent myocardial infarction. This study presents the usefulness of heart rate variability (HRV) and complexity analyses from short term ECG recordings as a screening tool for CAN.  相似文献   

10.
Regulation of heart rate was studied in rats receiving either i.v. saline at 64 microL/min or synthetic 28-residue rat atrial natriuretic peptide (ANF) at a dose sufficient to decrease mean arterial blood pressure by 10%. Autonomic influences were deduced from steady-state heart rate responses of each group to propranolol, atropine, or propranolol and atropine combined. A multiplicative model of heart rate control was used to derive quantitatively from the data the modulation of intrinsic heart rate by sympathetic and parasympathetic mechanisms. Animals receiving ANF showed a lower heart rate than control animals. This relative bradycardia was abolished by atropine. Blocking of sympathetic effects with propranolol had no effect on basal heart rate in either group, and atropinization led to significant increases in heart rate in both groups of rats. Mathematical analysis of the results showed that the bradycardia produced by ANF was due predominantly to a reduced intrinsic heart rate and to enhanced vagal inhibition of postganglionic sympathetic activity. Parasympathetic contribution to heart rate in the absence of sympathetic activity was negligible in control rats and small during ANF. We conclude that the major influences of ANF on heart rate control are a decrease of intrinsic heart rate and enhanced parasympathetic inhibition of postganglionic presynaptic sympathetic activity.  相似文献   

11.
12.
Forty subjects participated in an experiment designed to test the effects of different feedback displays on instructed heart rate speeding and slowing. One group of subjects received information about interpulse interval length every beat. This display included specific information about when systole occurred, in addition to information about performance relative to a criterion. Two other groups received similar information about performance, but their displays were not triggered by systole; rather, information about average interpulse interval was presented either every second or every 6 seconds. A fourth group of subjects participated in a perceptual motor task in which no instructions were given to control heart rate.Results indicated that the instructed subjects generated significantly greater heart rate speeding than slowing. Groups receiving feedback produced greater changes when compared to the control group only during the speeding seassions. No differences among feedback groups were present in the slowing task. During speeding, the 1-second group's performance deteriorated dramatically in the second session. The results suggested that, in the context of a feedback task, it is information about the occurrence of systole that facilitates heart rate speeding. Real-time displays are less facilitating of heart rate change and may disrupt speeding performance when information is presented at certain critical frequencies. Slowing performance was again shown to be unrelated to information frequency or reinforcement rate.  相似文献   

13.
Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.  相似文献   

14.
In this study we present a noninvasive method that enables the investigation of the fetal heart rate (FHR) fluctuations. The objective was to design a quantitative measurement to assess the fetal autonomic nervous system and to investigate its development as a function of the gestational age. Our Medical Physics group has developed a complex algorithm for online beat-to-beat detection of the fetal ECG (FECG), extracted from the maternal abdominal ECG signal. We used our previously acquired FECG data, which includes noninvasive recordings of 200 maternal abdominal ECG signals. From these, we chose 35 cases of healthy pregnancies that we divided into three groups according to gestational age: Group 1, 23 +/- 2 wk; Group 2, 32 +/- 1 wk; and Group 3, 39 +/- 1 wk. The FHR variability was analyzed by a time-frequency decomposition based on a continuous wavelet transform. We showed that, independent of the gestational age, most of the FHR power is concentrated in the very-low-frequency range (0.02-0.08 Hz) and in the low-frequency range (0.08-0.2 Hz). In addition, there is power in the high-frequency range that correlates with the frequency range of fetal respiratory motion (0.4-1.7 Hz). In the intermediate-frequency range (0.2-0.4 Hz), the power is significantly smaller. The changes in the average power spectrum in relation to gestation time were carefully and quantitatively examined. The results imply that there is a neural organization during the last trimester of the pregnancy, and the sympathovagal balance is reduced with the gestational age.  相似文献   

15.
16.
Wavelet thresholding with bayesian false discovery rate control   总被引:1,自引:0,他引:1  
The false discovery rate (FDR) procedure has become a popular method for handling multiplicity in high-dimensional data. The definition of FDR has a natural Bayesian interpretation; it is the expected proportion of null hypotheses mistakenly rejected given a measure of evidence for their truth. In this article, we propose controlling the positive FDR using a Bayesian approach where the rejection rule is based on the posterior probabilities of the null hypotheses. Correspondence between Bayesian and frequentist measures of evidence in hypothesis testing has been studied in several contexts. Here we extend the comparison to multiple testing with control of the FDR and illustrate the procedure with an application to wavelet thresholding. The problem consists of recovering signal from noisy measurements. This involves extracting wavelet coefficients that result from true signal and can be formulated as a multiple hypotheses-testing problem. We use simulated examples to compare the performance of our approach to the Benjamini and Hochberg (1995, Journal of the Royal Statistical Society, Series B57, 289-300) procedure. We also illustrate the method with nuclear magnetic resonance spectral data from human brain.  相似文献   

17.
In heart failure (HF), there is a reduced baroreflex sensitivity at rest, and during dynamic exercise there is enhanced muscle metaboreflex activation (MRA). However, how the arterial baroreflex modulates HR during exercise is unknown. We tested the hypothesis that spontaneous baroreflex sensitivity (SBRS) is attenuated during exercise in HF and that MRA further depresses SBRS. In seven conscious dogs we measured heart rate (HR), cardiac output, and left ventricular systolic pressure at rest and during mild and moderate dynamic exercise, before and during MRA (via imposed reductions of hindlimb blood flow), and before and after induction of HF (by rapid ventricular pacing). SBRS was assessed by the sequences method. In control, SBRS was reduced from rest with a progressive resetting of the baroreflex stimulus-response relationship in proportion to exercise intensity and magnitude of MRA. In HF, SBRS was significantly depressed in all settings; however, the changes with exercise and MRA occurred with a pattern similar to the control state. As in control, the baroreflex stimulus-response relationship showed an intensity- and muscle metaboreflex (MMR)-dependent rightward and upward shift. The results of this study indicate that HF induces an impairment in baroreflex control of HR at rest and during exercise, although the effects of exercise and MRA on SBRS occur with a similar pattern as in control, indicating the persistence of some vagal activity.  相似文献   

18.
Twelve patients with borderline hypertension [less than or equal to 21 X 33/12.6, greater than or equal to 18 X 6/12.0 kPa (less than or equal to 160/95; greater than or equal to 140/90 mm Hg)] participated in an experiment aimed at testing whether they could learn to attenuate heart rate while exercising on a cycle ergometer. Six experimental (E) subjects received beat-to-beat heart-rate feedback and were asked to slow heart rate while exercising; six control (C) subjects received no feedback. Averaged over 5 days (25 training trials) the exercise heart-rate of the E group was 97.8 bt min-1, whereas the C group averaged 107 bt min-1 (P = 0.03). Systolic blood pressure was unaffected by feedback training. Generally, changes in rate-pressure product reflected changes in heart-rate. Oxygen consumption was lower in the E than in the C group late in training. We conclude that neurally mediated changes associated with exercise in patients with borderline hypertension can be brought under behavioral control through feedback training.  相似文献   

19.
20.

Background

Osteopathic manipulative treatment (OMT) and ultrasound physical therapy (UPT) are commonly used for chronic low back pain. Although there is evidence from a systematic review and meta-analysis that OMT generally reduces low back pain, there are no large clinical trials that specifically assess OMT efficacy in chronic low back pain. Similarly, there is a lack of evidence involving UPT for chronic low back pain.

Methods

The OSTEOPAThic Health outcomes In Chronic low back pain (OSTEOPATHIC) Trial is a Phase III randomized controlled trial that seeks to study 488 subjects between August 2006 and June 2010. It uses a 2 × 2 factorial design to independently assess the efficacy of OMT and UPT for chronic low back pain. The primary outcome is a visual analogue scale score for pain. Secondary outcomes include back-specific functioning, generic health, work disability, and satisfaction with back care.

Conclusion

This randomized controlled trial will potentially be the largest involving OMT. It will provide long awaited data on the efficacy of OMT and UPT for chronic low back pain.

Trial registration

http://www.clinicaltrials.gov, NCT00315120  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号