首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth of the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17-21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain and in the rostral part of forebrain. The origin and functional significance of these neurons are discussed.  相似文献   

2.
Analysis of gene expression using gonadotropin-releasing hormone (GnRH) antisense oligonucleotide confirmed by immunocytochemical localization the occurrence of GnRH neurons along the nervus terminalis in the steelhead trout (Oncorhynchus mykiss). Double-label immunocytochemistry revealed the distribution of mammalian (m), salmon (s) and chicken II (cII)-type GnRHs and various pituitary hormones. Both sGnRH and mGnRH appeared to be colocalized in the same cells of the nervus terminalis. Chicken GnRH II-immunoreactivity was found only in fibers and terminals. In the younger fish [73 and 186 days after fertilization (DAF)] GnRH neurons were seen rostral to the olfactory bulb. A novel GnRH ganglion, along the nervus terminalis, was found at the cribriform bone (gCB). A few non-immunoreactive rounded cells were seen among the GnRH neurons. A second smaller ganglion was seen at the most rostrally located part of the ventromedial olfactory bulb (gROB). In the older fish (850 DAF) GnRH neurons were also observed in the basal forebrain. A small group of neurons (2–3 cells), at the caudoventromedial border of the olfactory bulb, formed the ganglion terminale. Occasionally isolated GnRH-immunoreactive cells were seen at the base of the olfactory epithelium, along the ventromedial margins of the olfactory nerve. GnRH-immunoreactive and GnRH mRNA expressing neurons were absent from midbrain regions at the ages observed. GnRH-immunoreactive fibers were present only in older fish. The pattern of distribution of fibers that were immunoreactive to all three forms of GnRH was identical. Fibers were seen along the medial side of the olfactory nerve, throughout the brain and in the pituitary, associated with growth hormone and somatolactin cells. This morphological study shows that molecular forms of GnRHs might have multiple functions.  相似文献   

3.
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28–34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
5.
The present paper reports the immunohistochemical distribution of the gonadotropin-releasing hormone (GnRH) structures in the brain of the Senegalese sole, Solea senegalensis. In this study, we have used two antibodies against the salmon GnRH and chicken GnRH-II forms and the streptavidin–biotin-peroxidase complex method. Immunoreactive cell bodies are observed at the junction between the olfactory bulbs and the telencephalon (terminal nerve ganglion cells), in the ventral telencephalon, in the preoptic parvocellular nucleus, and in the synencephalic nucleus of the medial longitudinal fasciculus. GnRH-immunoreactive fibres were found extensively throughout the brain, located in the telencephalon, preoptic area, hypothalamus, hypophysis, optic tectum, midbrain and rhombencephalon. The antisera used in this study against the two GnRH forms exhibited cross-reactivity on the same cell masses and did not allow cell populations expressing different GnRH forms to be discriminated clearly. However, anti-salmon GnRH immunostained the GnRH cells and fibres of the forebrain much more intensely, whereas the anti-chicken GnRH antiserum shows a higher immunoreactivity on synencephalic cells of the medial longitudinal fasciculus.  相似文献   

6.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of alpha-methylparatyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of alpha-methylparatyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

8.
Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells scattered in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These cells originate in the olfactory placode and migrate into the basal forebrain in late embryonic life. Here, we show that reelin, which is expressed along the route of the migrating cells, has an inhibitory role in guiding GnRH neurons to the basal forebrain. Only a small (approximately 5%) subpopulation of these neurons expresses one of the reelin receptors (ApoER2/Lrp8), and all GnRH neurons appear to lack the intracellular adaptor protein Dab1, suggesting that the function of reelin is not mediated by the conventional signal transduction pathway. The importance of reelin in the establishment of GnRH neurons in the hypothalamus was confirmed by our finding that the brains of developing and adult reeler mice of both sexes contained a markedly reduced number of these neuroendocrine neurons. Furthermore, the testes of adult males showed dilation of seminiferous tubules and reduction in their density when compared with controls. Mutants lacking the reelin receptors ApoER2 and Vldlr, and scrambler mice lacking Dab1, showed a normal complement of GnRH neurons in the hypothalamus, confirming that the effect of reelin in their migration is independent of Dab1.  相似文献   

9.

Background  

Mechanisms regulating neuronal migration during development remain largely undefined. Extracellular matrix cues, target site released factors, and components of the migratory neurons themselves are likely all coordinated in time and space directing neurons to their appropriate locations. We have studied the effects of proteases and their inhibitors on the extracellular matrix and the consequences to the migration of gonadotropin releasing hormone (GnRH) neurons in the embryonic chick. Chick GnRH neurons differentiate in the olfactory epithelium, migrate along the olfactory nerve and enter the forebrain. The accessibility of this coherent cell group make it amenable for studying protease/inhibitor roles in migratory processes.  相似文献   

10.
Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain   总被引:8,自引:0,他引:8  
Merchenthaler  I.  Göres  T.  Sétáló  G.  Petrusz  P.  Flerkó  B. 《Cell and tissue research》1984,237(1):15-29
Summary Gonadotropin-releasing hormone (GnRH) neurons and their pathways in the rat brain were localized by immunocytochemistry in 6-to 18-day-old female animals, by use of thick frozen or vibratome sections, and silver-gold intensification of the diaminobenzidine reaction product. GnRH-immunoreactive perikarya were observed in the following regions: olfactory bulb and tubercle, vertical and horizontal limbs of the diagonal band of Broca, medial septum, medial preoptic and suprachiasmatic areas, anterior and lateral hypothalamus, and different regions of the hippocampus (indusium griseum, Ammon's horn). In addition to the known GnRH-pathways (preoptico-terminal, preoptico-infundibular, periventricular), we also observed GnRH-immunopositive processes in several major tracts and areas of the brain, including the medial and cortical amygdaloid complex, stria terminalis, stria medullaris thalami, fasciculus retroflexus, medial forebrain bundle, indusium griseum, stria longitudinalis medialis and lateralis, hippocampus, periaqueductal gray of the mesencephalon, and extracerebral regions, such as the lamina cribrosa, nervus terminalis and its associated ganglia. By use of the silver-gold intensification method we present Golgi-like images of GnRH perikarya and their pathways. The possible distribution of efferents from each GnRH cell group is discussed.  相似文献   

11.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of -methyl-para-tyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of -methyl-para-tyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

12.
The vertebrate hypothalamus and surrounding region contain a large population of cells expressing tyrosine hydroxylase (TH), the rate limiting enzyme for synthesis of dopamine and other catecholamines. Some of these populations are sexually dimorphic in rats. We here examined sex differences in TH-immunoreactive populations in the forebrain of gonadally intact and gonadectomized prairie voles (Microtus ochrogaster), a species that sometimes shows unusual sexual differentiation of brain and behavior. A sex difference was found in the anteroventral periventricular preoptic area (AVPV; likely analogous to the rat rostral A14) only in gonadectomized subjects, which was due to a 50% reduction in the number of TH-immunoreactive cells after castration in males. There was no significant sex difference or effects of gonadectomy on the number of TH-immunoreactive cells in the anteroventral preoptic area (AVP), periventricular anterior hypothalamus (caudal A14), arcuate nucleus (A12), zona incerta (A13), or posterodorsal hypothalamus (A11). In a second experiment, testosterone propionate (TP; 500 microg), diethylstilbestrol (DES; 1 microg), or estradiol benzoate (EB; 30 microg) injected daily during the first week after birth each significantly reduced later TH expression in the AVPV of females by approximately 40-65% compared to oil-treated controls. Unlike rats, therefore, a sex difference in TH expression in the prairie vole AVPV is found only after removal of circulating gonadal hormones in males. Furthermore, unlike our previous findings on the generation of sex differences in extra-hypothalamic arginine-vasopressin expression in prairie voles, TH expression in the AVPV of female prairie voles can be highly masculinized by neonatal exposure to either aromatizable androgens or estrogens.  相似文献   

13.
Experiments were done to study the fate of transient catecholaminergic (TC) cells that develop in the rodent gut during ontogeny. When they are first detected, at Day E11 in rats, TC cells are distributed along the vagal pathway, in advance of the descending fibers of the vagus nerves, and in the foregut. The early TC cells coexpress the immunoreactivities of several neural markers, including 150-kDa neurofilament protein, peripherin, microtubule associated protein (MAP) 5, and growth-associated protein (GAP)-43, with those of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). All cells in the fetal rat bowel at Day E11 that express neural markers also express TH immunoreactivity. The primitive TC cells also express the immunoreactivities of neural cell adhesion molecule (N-CAM), neuropeptide Y (NPY), and nerve growth factor (NGF) receptor (and NGF receptor mRNA). By Day E12 TC cells are found along the vagal pathway and throughout the entire preumbilical bowel. At this age TC cells acquire additional characteristics, including MAP 2 and synaptophysin immunoreactivities and acetylcholinesterase activity, which indicate that they continue to mature as neurons. In addition, TC cells of the rat are immunostained at Day E12 by the NC-1 monoclonal antibody, which in rats labels multiple cell types including migrating cells of neural crest origin. Despite their neural properties, at least some TC cells divide and therefore are neural precursors and not terminally differentiated neurons. At Day E10 TH mRNA-containing cells were not detected by in situ hybridization; however, by Day E11 TH mRNA was detected in sympathetic ganglia and in scattered cells in the mesenchyme of the foregut and vagal pathway. At this age, the number of enteric and vagal cells containing TH mRNA is about 30% less than the number of cells containing TH immunoreactivity in adjacent sections. The ratio of TH mRNA-containing cells to TH-immunoreactive vagal and enteric cells is even less at Day E12, especially in more caudal regions of the preumbilical bowel. A similar decline in the ratio of TH mRNA-containing to TH-immunoreactive cells was not observed in sympathetic ganglia. After Day E12 TH mRNA cannot be detected in enteric or vagal cells by in situ hybridization; nevertheless, TH immunoreactivity continues to be present through Day E14. DBH, NPY, and NGF receptor immunoreactivities are expressed by TH-immunoreactive transitional cells in the fetal rat gut after TH mRNA is no longer detectable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Wray S 《Chemical senses》2002,27(6):569-572
Gonadotropin-releasing hormone (GnRH) neurons, critical for reproduction, are derived from the nasal placode and migrate into the brain along nasal axons. GnRH neurons appear to diverge from olfactory sensory cells during early stages of nasal placode differentiation. However, GnRH neurons rely on olfactory/vomeronasal axons as their pathway to the central nervous system (CNS). A novel factor, termed nasal embryonic luteinizing hormone-releasing hormone factor (NELF), was discovered in a differential screen of migrating versus nonmigrating GnRH neurons. NELF is expressed in olfactory sensory cells and GnRH cells in nasal areas. Antisense experiments demonstrated that knock-down of NELF decreased olfactory axon outgrowth and GnRH neuronal migration. These results indicate that NELF plays a role as a guidance molecule for olfactory axon projections and migration of GnRH cells. We hypothesize that NELF acts via a homophilic interaction and that NELF expression is critical for reproduction by insuring that GnRH cells reach the CNS. Furthermore, down-regulation of NELF on GnRH cells as they enter the telencephalon may allow GnRH cells to distinguish a different pathway(s) in the CNS (from those leading to olfactory regions) and thereby facilitate establishment of the appropriate adult-like GnRH distribution.  相似文献   

15.
Direct olfactory inputs to any of the known gonadotropin-releasing hormone (GnRH) containing neurons have not been demonstrated. Therefore, the rationale of this study was to examine whether olfactory inputs might in some way interact with the GnRH system(s) to synchronize reproductive behaviors. In order to establish this, we used anosmic mature male tilapia to investigate changes in reproductive behaviors, gonadal morphology, and GnRH1, GnRH2, and GnRH3 cellular morphology and change in GnRH mRNA levels by real-time polymerase chain reaction. Bilateral removal of the olfactory rosettes followed by occlusion of the nasal cavity (ORX) inhibited nest-building behavior, but had no effect on aggressive and sexual behaviors or gonadal morphology. ORX failed to alter the morphological features of GnRH1, GnRH2, and GnRH3 (cell number, size, GnRH optical density), but significantly decreased copies of GnRH1 and GnRH2 mRNAs. GnRH immunoreactive fibers were not evident in the olfactory nerve and rosettes. DiI application to the olfactory nerve labeled inputs primarily to the glomerular layer of the olfactory bulbs and extrabulbar inputs to the forebrain but not to GnRH neurons. These results provide evidence that the olfactory rosette is crucial for modulating nest-building behavior through second-order olfactory pathways interacting with GnRH1 and GnRH2 neuronal systems.  相似文献   

16.
Catecholaminergic neurons are affected in several neurological and psychiatric diseases. Tyrosine hydroxylase (TH) is the first, rate-limiting enzyme in catecholamine synthesis. We report a knockin mouse expressing Cre-recombinase from the 3'-untranslated region of the endogenous Th gene by means of an internal ribosomal entry sequence (IRES). The resulting Cre expression matches the normal pattern of TH expression, while the pattern and level of TH are not altered in the knockin mouse. Crossings with two different LacZ reporter mice demonstrated Cre-mediated genomic recombination in TH expressing tissues. In addition, LacZ was found in some unexpected cell populations (including oocytes), indicating recombination due to transient developmental TH expression. Our novel knockin mouse can be used for generation of tissue-specific or general knockouts (depending on scheme of crossing) in mice carrying genes flanked by loxP sites. This knockin mouse can also be used for tracing cell lineages expressing TH during development.  相似文献   

17.
Catecholaminergic cells are transiently present during development of the fetal murine bowel. These transient catecholaminergic (TC) cells appear at Day E10, but by Day E13 can no longer be detected. In order to evaluate the hypothesis that these cells are the precursors of enteric neurons, we investigated the possibilities that TC cells coexpress neuronal and catecholaminergic markers, that they can be found along the presumed path followed by crest-derived cells migrating to the gut, and that they are proliferating. TC cells were identified immunocytochemically using polyclonal or monoclonal antibodies to tyrosine hydroxylase (TH). At Day E9.5, TH-immunoreactive cells were observed to be present along the wall of the primordial esophagus in lines that extended from the developing nodose ganglia down to the boundary of the stomach. At Day E9.5, TC cells were absent from the remaining foregut. These lines of esophageal TH-immunoreactive cells became continuous with similar cells in the wall of the stomach and duodenum on Day E10. Coincident expression of neurofilament immunoreactivity was seen in all of the esophageal TH-immunoreactive cells present at Day E9.5, as well as in the entire set of esophageal and lower enteric TH-immunoreactive cells present at Day E10 (or later); moreover, at Days E9.5 and E10, all of the neurofilament-immunoreactive cells in the esophagus, stomach, or duodenum were also TH-immunoreactive. In contrast, neurofilament immunoreactivity was not expressed by the endodermally derived pancreatic duct and islet cells, which were also TH-immunoreactive; nor could expression of neurofilament immunoreactivity be detected in the TH-immunoreactive cells of the nodose ganglia. It was not until Day E11 that neurofilament-immunoreactive cells, which did not coexpress TH immunoreactivity (the definitive phenotype of enteric neurons) began to appear in the gut. Vagal axons reached as far distally as the nodose ganglion on Day E9.5, the esophagogastric junction on Day E10, and did not enter the stomach until Day E11. When the vagus nerves reached their level, the TH-immunoreactive cells in the wall of the esophagus came to lie among the nerve fibers. TH-immunoreactive cells are thus present on the pathway ultimately followed by the vagus nerves, but they develop before vagal fibers reach their level. The vagal TH-immunoreactive cells, therefore, are probably not initially migrating on vagal fibers, but appear instead to be overtaken by the descending vagus nerves.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Peptide YY (3-36) [PYY(3-36)] inhibits feeding in rodents, nonhuman primates and humans, yet the neural circuits underlying this action remain to be determined. Here we assessed whether PYY(3-36) inhibits feeding by activating neurons in forebrain and hindbrain sites containing Y2 receptors and linked to control of food intake, or in hindbrain sites immediately downstream of vagal afferent neurons. Rats received an anorexigenic dose of PYY(3-36), and the number of neurons expressing Fos, an indicator of neuronal activation, was determined in anterior hypothalamus (AH), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), lateral hypothalamus (LH), ventromedial hypothalamus (VMH), central nucleus of the amygdala (CeA), area postrema (AP), and caudal medial nucleus tractus solitarius (cmNTS), commissural NTS (cNTS), and gelatinosus NTS (gNTS). Expression of tyrosine hydroxylase (TH), an indicator of catecholamine synthesis, was also measured in the cmNTS. PYY(3-36) increased Fos in ARC, cmNTS, gNTS and AP. Approximately 10% of Fos+ neurons in the cmNTS were TH+. These results suggest that PYY(3-36) inhibits feeding through direct activation of ARC neurons, and direct and/or indirect activation via vagal afferent nerves of cmNTS, gNTS and AP, including some catecholaminergic neurons in the cmNTS.  相似文献   

19.
Gamma‐aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate‐limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin‐releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1–7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock‐out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 249–270, 2015  相似文献   

20.
GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号