首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human DNA polymerase iota (pol iota) is a member of the Y-family of low fidelity lesion bypass DNA polymerases. In addition to a probable role in DNA lesion bypass, this enzyme has recently been shown to be required for somatic hypermutation in human B-cells. We found earlier that human pol iota has deoxyribose phosphate (dRP) lyase activity and unusual specificity for activity during DNA synthesis, suggesting involvement in specialized forms of base excision repair (BER). Here, mapping of the domain structure of human pol iota by controlled proteolysis revealed that the enzyme has a 48-kDa NH2-terminal domain and a protease resistant 40-kDa "core domain" spanning residues Met79 to approximately Met445. A covalently cross-linked pol iota-DNA complex, representing a trapped intermediate in the dRP lyase reaction, was subjected to controlled proteolysis. Cross-linking was mapped to the 40-kDa core domain, indicating that the dRP lyase active site is in this region. To further evaluate the BER capacity of the enzyme, the dRP lyase and DNA polymerase activities were characterized on DNA substrates representing BER intermediates, and we found that pol iota was able to complement the in vitro single-nucleotide BER deficiency of a DNA polymerase beta null cell extract.  相似文献   

2.
Gao G  DeRose EF  Kirby TW  London RE 《Biochemistry》2006,45(6):1785-1794
The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general increase in the Hill coefficients observed in the complex is consistent with the screening of the interacting lysine residues by the DNA. The pKa of K312 residue increased to 10.58 in the complex, probably due to salt bridge formation with the 5'-phosphate group of the DNA. The pKa values obtained for the lyase domain of Pol lambda in the present study are consistent with recent crystallographic studies of Pol beta complexed with 5-phosphorylated abasic sugar analogues in nicked DNA which reveal an open site with no obvious interactions that would significantly depress the pK value for the active site lysine residue. It is suggested that due to the heterogeneity of the damaged DNA substrates with which Pol lambda as well as other related polymerases may be required to bind, the unexpectedly poor optimization of the lyase catalytic site may reflect a compromise of flexibility with catalytic efficiency.  相似文献   

3.
Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol β) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis.  相似文献   

4.
Base excision repair (BER) is a major repair pathway in eukaryotic cells responsible for repair of lesions that give rise to abasic (AP) sites in DNA. Pivotal to this process is the 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity of DNA polymerase beta (Pol beta). DNA polymerase lambda (Pol lambda) is a recently identified eukaryotic DNA polymerase that is homologous to Pol beta. We show here that human Pol lambda exhibits dRP lyase, but not AP lyase, activity in vitro and that this activity is consistent with a beta-elimination mechanism. Accordingly, a single amino acid substitution (K310A) eliminated more than 90% of the wild-type dRP lyase activity, thus suggesting that Lys(310) of Pol lambda is the main nucleophile involved in the reaction. The dRP lyase activity of Pol lambda, in coordination with its polymerization activity, efficiently repaired uracil-containing DNA in an in vitro reconstituted BER reaction. These results suggest that Pol lambda may participate in "single-nucleotide" base excision repair in mammalian cells.  相似文献   

5.
DNA polymerase beta (pol beta) has long been described as a nuclear enzyme involved in DNA repair. A pol beta from the trypanosomatid parasite Crithidia fasciculata, however, is the first example of a mitochondrial enzyme of this type. The mammalian nuclear enzyme functions not only as a nucleotidyl transferase but also has a dRP lyase activity that cleaves 5'-deoxyribose phosphate (dRP) groups from DNA, thus contributing to two consecutive steps of the base excision repair pathway. We find that the mitochondrial pol beta also has dRP lyase activity. Interestingly, the K(m) of this enzyme for a dRP-containing substrate is similar to that for the rat enzyme, but its k(cat) is very low. This difference is due to a deficiency of the mitochondrial enzyme in the release of dRP from the enzyme following its cleavage from the DNA.  相似文献   

6.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

7.
A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA. This DNA ligand represents a potential BER intermediate. The crystal structure reveals that the dRP group is bound in a non-catalytic binding site. The catalytic nucleophile in the dRP lyase reaction, Lys72, and all other potential secondary nucleophiles, are too far away to participate in nucleophilic attack on the C1' of the sugar. An approximate model of the dRP group in the expected catalytic binding site suggests that a rotation of 120 degrees about the dRP 3'-phosphate is required to position the epsilon-amino Lys72 close to the dRP C1'. This model also suggests that several other side chains are in position to facilitate the beta-elimination reaction. From results of mutational analysis of key residues in the dRP lyase active site, it appears that the substrate dRP can be stabilized in the observed non-catalytic binding conformation, hindering dRP lyase activity.  相似文献   

8.
Pinz KG  Bogenhagen DF 《DNA Repair》2006,5(1):121-128
Mammalian DNA polymerase gamma, the sole polymerase responsible for replication and repair of mitochondrial DNA, contains a large catalytic subunit and a smaller accessory subunit, pol gammaB. In addition to the polymerase domain, the large subunit contains a 3'-5' editing exonuclease domain as well as a dRP lyase activity that can remove a 5'-deoxyribosephosphate (dRP) group during base excision repair. We show that the accessory subunit enhances the ability of the catalytic subunit to function in base excision repair mainly by stimulating two subreactions in the repair process. Pol gammaB appeared to specifically enhance the rate at which pol gamma was able to locate damage in high molecular weight DNA. One pol gammaB point mutant known to have impaired ability to bind duplex DNA stimulated repair poorly, suggesting that duplex DNA binding through pol gammaB may help the catalytic subunit locate sites of DNA damage. In addition, the small subunit significantly stimulated the dRP lyase activity of pol gammaA, although it did not increase the rate at which the dRP group dissociated from the enzyme. The ability of DNA pol gamma to process a high load of damaged DNA may be compromised by the slow release of the dRP group.  相似文献   

9.
Solanapyrone A, a phytotoxin and enzyme inhibitor isolated from a fungus (SUT 01B1-2) selectively inhibits the activities of mammalian DNA polymerase beta and lambda (pol beta and lambda) in vitro. The IC50 values of the compound were 30 microm for pol beta and 37 microm for pol lambda. Because pol beta and lambda are in a family and their three-dimensional structures are thought to be highly similar to each other, we used pol beta to analyze the biochemical relationship with solanapyrone A. On pol beta, solanapyrone A antagonistically competed with both the DNA template and the nucleotide substrate. BIAcore analysis demonstrated that solanapyrone A bound selectively to the N-terminal 8-kDa domain of pol beta. This domain is known to bind single-stranded DNA, provide 5'-phosphate recognition of gapped DNA, and cleave the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity) including 5'-deoxyribose phosphate lyase activity. Solanapyrone A inhibited the single-stranded DNA-binding activity but did not influence the activities of the 5'-phosphate recognition in gapped DNA structures and the AP lyase. Based on these results, the inhibitory mechanism of solanapyrone A is discussed.  相似文献   

10.
The purpose of this study was to investigate the molecular action of lithocholic acid (LCA), known as a selective inhibitor of DNA polymerase beta (pol beta). The 39-kDa pol beta was separated proteolytically into two fragments of the template-primer binding domain (8 kDa) and the catalytic domain (31 kDa). LCA bound tightly to the 8-kDa fragment but not to the 31-kDa fragment. We examined the structural interaction with the 8-kDa domain using LCA. On (1)H-(15)N HMQC NMR analysis of pol beta with LCA, the 8-kDa domain bound to LCA as a 1:1 complex with a dissociation constant (K(D)) of 1.56 mM. The chemical shifts were observed only in residues mainly in helix-3, helix-4, and the 79-87 turn of the same face. No significant shifts were observed for helix-1, helix-2, and other loops of the 8-kDa domain. This region was composed mainly of three amino acid residues (Lys60, Leu77, and Thr79) of pol beta on the LCA interaction interface. The inhibition mechanism and the structure-function relationship between pol beta and LCA is discussed.  相似文献   

11.
Shen X  Woodgate R  Goodman MF 《DNA Repair》2005,4(12):665-1373
Escherichia coli DNA polymerase IV and V (pol IV and pol V) are error-prone DNA polymerases that are induced as part of the SOS regulon in response to DNA damage. Both are members of the Y-family of DNA polymerases. Their principal biological roles appear to involve translesion synthesis (TLS) and the generation of mutational diversity to cope with stress. Although neither enzyme is known to be involved in base excision repair (BER), we have nevertheless observed apurinic/apyrimidinic 5'-deoxyribose phosphate (AP/5'-dRP) lyase activities intrinsic to each polymerase. Pols IV and V catalyze cleavage of the phosphodiester backbone at the 3'-side of an apurinic/apyrimidinic (AP) site as well as the removal of a 5'-deoxyribose phosphate (dRP) at a preincised AP site. The specific activities of the two error-prone polymerase-associated lyases are approximately 80-fold less than the associated lyase activity of human DNA polymerase beta, which is a key enzyme used in short patch BER. Pol IV forms a covalent Schiff's base intermediate with substrate DNA that is trapped by sodium borohydride, as proscribed by a beta-elimination mechanism. In contrast, a NaBH(4) trapped intermediate is not observed for pol V, even though the lyase specific activity of pol V is slightly higher than that of pol IV. Incubation of pol V (UmuD'(2)C) with a molar excess of UmuD drives an exchange of subunits to form UmuD'D+insoluble UmuC causing inactivation of polymerase and lyase activities. The concomitant loss of both activities is strong evidence that pol V contains a bona fide lyase activity.  相似文献   

12.
Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase lambda (pol lambda) in vitro. These compounds did not influence the activities of replicative pols such as alpha, delta, and epsilon, or even the activity of pol beta which is thought to have a very similar three-dimensional structure to the pol beta-like region of pol lambda. Since delta-tocotrienol had the strongest inhibitory effect among the four (alpha- to delta-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol lambda. The inhibitory effect of delta-tocotrienol on both intact pol lambda (residues 1-575) and a truncated pol lambda lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol lambda) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1microM, respectively. However, del-2 pol lambda (residues 245-575) containing the C-terminal pol beta-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with delta-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol lambda and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol lambda and anti-angiogenesis by delta-tocotrienol was discussed.  相似文献   

13.
The Ape1 protein initiates the repair of apurinic/apyrimidinic sites during mammalian base excision repair (BER) of DNA. Ape1 catalyzes hydrolysis of the 5'-phosphodiester bond of abasic DNA to create nicks flanked by 3'-hydroxyl and 5'-deoxyribose 5-phosphate (dRP) termini. DNA polymerase (pol) beta catalyzes both DNA synthesis at the 3'-hydroxyl terminus and excision of the 5'-dRP moiety prior to completion of BER by DNA ligase. During BER, Ape1 recruits pol beta to the incised apurinic/apyrimidinic site and stimulates 5'-dRP excision by pol beta. The activities of these two enzymes are thus coordinated during BER. To examine further the coordination of BER, we investigated the ability of Ape1 to modulate the deoxynucleotidyltransferase and 5'-dRP lyase activities of pol beta. We report here that Ape1 stimulates 5'-dRP excision by a mechanism independent of its apurinic/apyrimidinic endonuclease activity. We also demonstrate a second mechanism, independent of Ape1, in which conditions that support DNA synthesis by pol beta also enhance 5'-dRP excision. Ape1 modulates the gap-filling activity of pol beta by specifically inhibiting synthesis on an incised abasic substrate but not on single-nucleotide gapped DNA. In contrast to the wild-type Ape1 protein, a catalytically impaired mutant form of Ape1 did not affect DNA synthesis by pol beta. However, this mutant protein retained the ability to stimulate 5'-dRP excision by pol beta. Simultaneous monitoring of 5'-dRP excision and DNA synthesis by pol beta demonstrated that the 5'-dRP lyase activity lags behind the polymerase activity despite the coordination of these two steps by Ape1 during BER.  相似文献   

14.
A new gene (POLL) encoding a novel DNA polymerase (Pol lambda) has been identified at mouse chromosome 19. Murine Pol lambda, consisting of 573 amino acid residues, has a 32% identity to Pol beta, involved in nuclear DNA repair in eukaryotic cells. It is interesting that Pol lambda contains all the critical residues involved in DNA binding, nucleotide binding and selection, and catalysis of DNA polymerization, that are conserved in Pol beta and other DNA polymerases belonging to family X. Murine Pol lambda, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity when assessed by in situ gel analysis. Pol lambda also conserves the critical residues of Pol beta required for its intrinsic deoxyribose phosphate lyase (dRPase) activity. The first 230 amino acid residues of Pol lambda, that have no counterpart in Pol beta, contain a BRCT domain, present in a variety of cell-cycle check-point control proteins responsive to DNA damage and proteins involved in DNA repair. Northern blotting, in situ hybridization analysis and immunostaining showed high levels of Pol lambda specifically expressed in testis, being developmentally regulated and mainly associated to pachytene spermatocytes. These first evidences, although indirect, suggest a potential role of Pol lambda in DNA repair synthesis associated with meiosis.  相似文献   

15.
Leishmania infantum is a parasitic protozoan which infects humans. This paper reports the expression in Escherichia coli and purification of the L. infantum gene product (AF182167), as well as its characterization as a DNA polymerase beta (Polbeta)-like, template-dependent DNA repair enzyme, with a metal preference for Mn2+ over Mg2+. As is the case with mammalian Polbeta and DNA polymerase lambda (Pollambda), L. infantum DNA polymerase beta (Li Polbeta) prefers gapped-DNA substrates having a 5'-phosphate end, in agreement with its role in DNA repair reactions. Purified Li Polbeta also displayed a 5'-deoxyribose-5-phosphate (dRP) lyase activity, consistent with a beta-elimination mechanism. The concerted action of dRP lyase and DNA polymerization activities of Li Polbeta on a uracil-containing DNA suggests its participation in "single-nucleotide" base excision repair (BER). Analysis of Li Polbeta DNA polymerization activity at different stages of the L. infantum infective cycle supports a role for Li Polbeta in nuclear DNA repair after the oxidative damage occurring inside the macrophage.  相似文献   

16.
DNA polymerase (pol) beta is a two-domain DNA repair enzyme that undergoes structural transitions upon binding substrates. Crystallographic structures indicate that these transitions include movement of the amino-terminal 8-kDa lyase domain relative to the 31-kDa polymerase domain. Additionally, a polymerase subdomain moves toward the nucleotide-binding pocket after nucleotide binding, resulting in critical contacts between alpha-helix N and the nascent base pair. Kinetic and structural characterization of pol beta has suggested that these conformational changes participate in stabilizing the ternary enzyme-substrate complex facilitating chemistry. To probe the microenvironment and dynamics of both the lyase domain and alpha-helix N in the polymerase domain, the single native tryptophan (Trp-325) of wild-type enzyme was replaced with alanine, and tryptophan was strategically substituted for residues in the lyase domain (F25W/W325A) or near the end of alpha-helix N (L287W/W325A). Influences of substrate on the fluorescence anisotropy decay of these single tryptophan forms of pol beta were determined. The results revealed that the segmental motion of alpha-helix N was rapid ( approximately 1 ns) and far more rapid than the step that limits chemistry. Binding of Mg(2+) and/or gapped DNA did not cause a noticeable change in the rotational correlation time or angular amplitude of tryptophan in alpha-helix N. More important, binding of a correct nucleotide significantly limited the angular range of the nanosecond motion within alpha-helix N. In contrast, the segmental motion of the 8-kDa domain was "frozen" upon DNA binding alone, and this restriction did not increase further upon nucleotide binding. The dynamics of alpha-helix N are discussed from the perspective of the "open" to "closed" conformational change of pol beta deduced from crystallography, and the results are more generally discussed in the context of reaction cycle-regulated flexibility for proteins acting as molecular motors.  相似文献   

17.
18.
Beard WA  Wilson SH 《Mutation research》2000,460(3-4):231-244
DNA polymerase beta, the smallest eukaryotic DNA polymerase, is designed to synthesize DNA in short DNA gaps during DNA repair. It is composed of two specialized domains that contribute essential enzymatic activities to base excision repair (BER). Its amino-terminal domain possesses a lyase activity necessary to remove the 5'-deoxyribose phosphate (dRP) intermediate generated during BER. Removal of the dRP moiety is often the rate-limiting step during BER. Failure to remove this group may initiate alternate BER pathways. The larger polymerase domain has nucleotidyl transferase activity. This domain has a modular organization with sub-domains that bind duplex DNA, catalytic metals, and the correct nucleoside triphosphate in a template-dependent manner. X-ray crystal structures of DNA polymerase beta, with and without bound substrates, has inferred that domain, sub-domain, and substrate conformational changes occur upon ligand binding. Many of these conformational changes are distinct from those observed in structures of other DNA polymerases. This review will examine the structural aspects of DNA polymerase beta that facilitate its role in BER.  相似文献   

19.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

20.
The nature of conformational transitions in DNA polymerase lambda (pol lambda), a low-fidelity DNA repair enzyme in the X-family that fills short nucleotide gaps, is investigated. Specifically, to determine whether pol lambda has an induced-fit mechanism and open-to-closed transition before chemistry, we analyze a series of molecular dynamics simulations from both the binary and ternary states before chemistry, with and without the incoming nucleotide, with and without the catalytic Mg(2+) ion in the active site, and with alterations in active site residues Ile(492) and Arg(517). Though flips occurred for several side-chain residues (Ile(492), Tyr(505), Phe(506)) in the active site toward the binary (inactive) conformation and partial DNA motion toward the binary position occurred without the incoming nucleotide, large-scale subdomain motions were not observed in any trajectory from the ternary complex regardless of the presence of the catalytic ion. Simulations from the binary state with incoming nucleotide exhibit more thumb subdomain motion, particularly in the loop containing beta-strand 8 in the thumb, but closing occurred only in the Ile(492)Ala mutant trajectory started from the binary state with incoming nucleotide and both ions. Further connections between active site residues and the DNA position are also revealed through our Ile(492)Ala and Arg(517)Ala mutant studies. Our combined studies suggest that while pol lambda does not demonstrate large-scale subdomain movements as DNA polymerase beta (pol beta), significant DNA motion exists, and there are sequential subtle side chain and other motions-associated with Arg(514), Arg(517), Ile(492), Phe(506), Tyr(505), the DNA, and again Arg(514) and Arg(517)-all coupled to active site divalent ions and the DNA motion. Collectively, these motions transform pol lambda to the chemistry-competent state. Significantly, analogs of these residues in pol beta (Lys(280), Arg(283), Arg(258), Phe(272), and Tyr(271), respectively) have demonstrated roles in determining enzyme efficiency and fidelity. As proposed for pol beta, motions of these residues may serve as gate-keepers by controlling the evolution of the reaction pathway before the chemical reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号