首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fat cells isolated from the mesenteric adipose tissue of chickens (pullets) responded to glucagon with an increase in lipolysis and a sustained rise in cyclic adenosine 3':5'-monophosphate (cyclic AMP) over a 30-min incubation. The prolonged accumulation of cyclic AMP due to glucagon in chicken fat cells was primarily intracellular. In addition, there was little increase in cyclic AMP accumulation due to theophylline alone or potentiation of the increase due to glucagon. These data indicate that chicken fat cells, unlike rat fat cells, are relatively insensitive to theophylline. Neither lipolysis nor cyclic AMP accumulation by chicken fat cells was inhibited by free fatty acid to albumin ratios (3 to 7) which markedly reduced both events in rat fat cells. However, in the absence of albumin from the medium, lipolysis in chicken fat cells was reduced, but not to the same extent as in rat fat cells. Chicken fat cells did accumulate more intracellular free fatty acids in response to lipolytic agents than did rat fat cells. The uptake of oleate by rat and chicken fat cells was identical. Glucagon-induced accumulation of cyclic AMP by chicken fat cell ghosts was unaffected by added oleate. Under identical conditions glucagon-induced adenylate cyclase activity of rat fat cell ghosts was markedly inhibited by added oleate. Triglyceride lipase activity of the pH 5.2 precipitate from a 40,000 x g infranatant of homogenized fat cells from chickens was less sensitive than that from rat fat cells to the ratio of oleate to albumin. These results suggest that the maintenance of cyclic AMP levels in chicken fat cells incubated with lipolytic agents results from the relative insensitivity of chicken fat cells to free fatty acid inhibition of cyclic AMP accumulation.  相似文献   

2.
The large increase in cyclic AMP accumulation by rat white fat cells seen in the presence of lipolytic agents plus methylxanthines and adenosine deaminase was markedly inhibited by lactate. However, lipolysis was unaffected by lactate. Octanoate, hexanoate, heptanoate, and beta-hydroxybutyrate inhibited both cyclic AMP accumulation and lipolysis by rat fat cells. The mechanism by which these acids inhibit lipolysis differs from that for long chain fatty acids such as oleate. Oleate directly inhibited triglyceride lipase activity of homogenized rat adipose tissue. In contrast, octanoate, beta-hydroxybutyrate, and lacatate had no effect on triglyceride lipase activity. Hormone-stimulated adenylate cyclase activity of rat fat cell ghosts was inhibited by oleate and 4mM octanoate but not by 1.6 mM octanoate, heptanoate, hexanoate, beta-hydroxybutyrate or lactate. None of the acids affected the soluble protein kinase activity of rat adipose tissue. There was no stimulation by lactate, butyrate, beta-hydroxybutyrate, or octanoate of the soluble or particulate cyclic AMP antilipolytic action of a short chain acid such as octanoate or hexanoate was not accompanied by any drop in total fat cell ATP. The mechanism by which lactate lowers cyclic AMP but not lipolysis remains to be established.  相似文献   

3.
The release and metabolism of adenosine was examined using rat fat cells in which the nucleotide pool has been labeled by incubation with radioactive adenine. The accumulation of adenosine in the medium was near maximal at the start of the incubation and increased only slightly thereafter. Adenosine was rapidly deaminated to inosine and subsequently oxidized to uric acid. In the presence of allopurinol, and inhibitor of xanthine dehydrogenase, hypoxanthine accumulated in the medium as the end-product of adenosine catabolism. Adenosine accumulated in the medium only if fat cells were incubated in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. Even in the presence of this inhibitor there was no acceleration of adenosine release by norepinephrine in the presence of theophylline. However, there was an increase in labeled intracellular AMP accumulation by norepinephrine plus theophylline. The increase in labeled AMP correlated with the final free fatty acid to albumin ratio suggesting that the rise in AMP was related to an accumulation of intracellular free fatty acids. The addition of sodium oleate to the medium mimicked the effect of norepinephrine plus theophylline on the accumulation of labeled AMP. These results indicate that AMP rather than adenosine accumulates in isolated fat cells during incubation with lipolytic agents.  相似文献   

4.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

5.
In rat fat cells incubated with lipolytic agents and insulin for 30 or 60 minutes the increase in cyclic AMP accumulation due to norepinephrine and theophylline or adenosine deaminase added during the last 2-5 minutes of the incubation period was much greater as compared to cells incubated in the absence of insulin. Protaglandin E1 or nicotinic acid were just as anti-lipolytic as insulin but prior incubation with these agents markedly decreased the subsequent rise in cyclic AMP accumulation due to late catecholamine addition. The ability of insulin to increase cyclic AMP accumulation appeared to be secondary to inhibition of lipolysis. These results indicate that prostaglandin E1 and nicotinic acid are inhibitors of cyclic AMP accumulation while insulin acts by another mechanism to reduce lipolysis.  相似文献   

6.
Clofibrate (Atromid-S), nicotinic acid, and insulin are known to be potent hypolipidemic and antilipolytic agents. The present study was undertaken to define the mechanism of action of this latter effect on isolated rat and human fat cells. Sodium clofibrate (0.42 mM), nicotinic acid (0.42 mM), and insulin (100 microU/mL) were shown to inhibit norepinephrine-stimulated lipolysis in rat and human adipose cells and this inhibition was associated with a reduction in intracellular 3',5'-cyclic AMP levels. A similar cyclic AMP lowering effect was demonstrated with insulin in the presence of procaine-HCL, which uncouples the adenylate cyclase system from lipolysis. This insulin effect was attributed to inhibition of adenylate cyclase. A direct and significant inhibition of adenylate cyclase in membrane fractions obtained from isolated human adipocytes was demonstrated for all three antilipolytic agents. The common membrane site of action of these agents whereby adenylate cyclase activity is depressed, thus decreasing cyclic AMP production and free fatty acid (FFA) mobilization from adipose stores, implies a central role for the adenylate cyclase system. These findings are consistent with the view that the hypotriglyceridemic effects of clofibrate, nicotinic acid, and insulin may be partly explained by deprivation of FFA substrate for hepatic very low density lipoprotein synthesis.  相似文献   

7.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

8.
The influence of cyclic AMP analogues and fatty acids on glycerolipid biosynthesis in monolayer cultures of rat hepatocytes was investigated. Chlorophenylthio-cyclic AMP and adenosine 3':5'-cyclic phosphorothioate inhibited the rate of triacylglycerol synthesis from [1(3)-3H]glycerol, and phosphatidylcholine synthesis from [Me-3H]-choline. Supplementation of the hepatocytes with palmitate (1 mM) reversed chlorophenylthio-cyclic AMP inhibition of triacylglycerol synthesis. Similarly, cyclic AMP analogue-inhibition of phosphatidylcholine synthesis was abolished when the cells were simultaneously incubated with oleate (3 mM). Reactivation of phosphatidylcholine synthesis in chlorophenylthio-cyclic AMP-supplemented cells with oleate was accompanied by conversion of CTP: phosphocholine cytidylyltransferase into the membrane-bound form, since these cells released the enzyme more slowly after treatment with digitonin. The opposing actions of cyclic AMP and fatty acids are discussed in relation to the regulation of glycerolipid biosynthesis during starvation, diabetes and stress.  相似文献   

9.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

10.
Adipocytes were prepared by collagenase digestion of rat epididymal adipose tissue and incubated for 5, 15 or 30 minutes in Krebs-Ringer bicarbonate buffer containing albumin (40 mg/ml), glucose (1 mg/ml) and epinephrine. Calcium ion was present in some incubations at concentration of 2.5 mM and omitted from others; media with no added calcium contained 1.0 mM EGTA thereby producing a final calcium concentration of less than 10(-7) M. Glycerol release and accumulation of cyclic AMP were measured. Basal lipolysis and cell cyclic AMP levels were increased slightly but not significantly when adipocytes were incubated in calcium free media. Lipolysis could be activated with epinephrine in the absence of calcium but the sensitivity of the lipolytic response was greatly reduced; however, the maximum lipolytic response to epinephrine was not decreased in calcium free media. Similarly, incubation of adipocytes in calcium free media resulted in decreased accumulation of cyclic AMP in response to epinephrine but only when sub-maximum concentrations of the catecholamine were present. Varying the extracellular calcium concentration showed that a concentration of at least 10(-5) M was optimal for epinephrine activation of lipolysis. These observations are considered in accord with the view that activation of adenylate cyclase is facilitated by calcium ion.  相似文献   

11.
Summary Basal glucose utilization by isolated rat adipocytes have been found to be increased ten times in the presence of certain preparations of albumin. In these conditions the effects of several adrenergic agonists and related compounds on glucose oxidation, lipolysis and triacylglycerol synthesis in isolated fat cells have been studied. Oxidation of D(1-14C) glucose in rat adipocytes was almost completely inhibited by norepinephrine and isoproterenol when added to incubated fat cells. Agents able to modify intracellular AMP cyclic levels by different mechanisms display a similar ability to imitate the effect of lipolytic agents. The inhibition of glucose oxidation due to norepinephrine and isoproterenol is partially reverted by propanolol. Under the same conditions in which norepinephrine and isoproterenol markedly reduced glucose conversion to 14CO2, they stimulated lipolysis and triacylglycerol synthesis and in this case propanolol also reverted those actions. However, in these experimental conditions, norepinephrine and isoproterenol did not raise CAMP levels 10 min after hormone addition.It is concluded from these data that glucose oxidation through hexose monophosphate shunt, activation of lipolysis and triacylglycerol synthesis in isolated rat fat cells by lipolytic agents occurs by a mechanism(s) that depend(s) on intracellular free fatty acids levels.  相似文献   

12.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

13.
The incorporation of [(32)P]P(i) into phosphatidylinositol by rat fat-cells was markedly increased in the presence of adrenaline. Phosphatidic acid labelling was also increased, but to a lesser extent. These effects are due to alpha(1)-adrenergic stimulation since they were unaffected by propranolol, blocked by alpha-blockers in the potency order prazosin相似文献   

14.
S Borst  M Conolly 《Life sciences》1988,43(13):1021-1029
In intact human lymphocytes, cyclic AMP accumulation in response to isoproterenol was inhibited by 5 mM EDTA, by deletion of calcium ions from the medium and by 1 mM lanthanum chloride, but not by 1 microM verapamil or by 10 microM nifedipine. A23187 caused a modest increase in cyclic AMP content. Exposure of lymphocytes to 5 microM 1-isoproterenol desensitized the cells to subsequent beta-adrenergic stimulation, reducing cyclic AMP accumulation. With higher concentrations of 1-isoproterenol (50 microM), receptor density was reduced as well. None of the above agents attenuated losses in agonist-stimulated cyclic AMP accumulation induced by treatment with 5 microM isoproterenol for 90 min. These data suggest that calcium ions, both those present in the extracellular medium and those bound to the plasma membrane, are required for isoproterenol-stimulation of adenylate cyclase. In addition, it appears that neither the presence of extracellular calcium ions nor full activation of adenylate cyclase are required for desensitization.  相似文献   

15.
In the presence of either methyl xanthines or adenosine deaminase, isoproterenol elicited large dramatic increases in accumulation of cyclic AMP. In contrast, cyclic AMP accumulation in response to epinephrine or norepinephrine was not potentiated by either methyl xanthines or by adenosine deaminase. Blocking the alpha adrenergic activity of norepinephrine and epinephrine with phentolamine established synergism between these catecholamines and methyl xanthines and adenosine deaminase. The activity of the particulate phosphodiesterase was not influenced by norepinephrine suggesting that the lack of synergism between the catecholamines norepinephrine and epinephrine and methyl xanthines is unrelated to this enzyme. The data are interpreted to suggest that the alpha adrenergic activity of catecholamines prevents the potentiation of cyclic AMP accumulation that occurs when the action of endogenously produced adenosine is interfered with, either by its degradation with adenosine deaminase or by receptor blockade with methyl xanthine. Because a major action of adenosine on fat cells is to inhibit adenylate cyclase it is suggested that alpha adrenergic receptor activation limits the extent to which the enzyme adenylate cyclase can be activated in a fashion similar to that of adenosine.  相似文献   

16.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

17.
The activity of the lipolytic system of the obese hyperglycemic mouse was assessed after treatment with physiological doses of thyroxin (T4). The treatment significantly increased fatty acid mobilization in response to adrenaline over the levels observed in the control mice under all conditions studied. The activities of the high- and low-Km phosphodiesterases and of adenylate cyclase were also studied. Treatment of the ob/ob mice with T4 had little effect on the activities of the cyclic AMP phosphodiesterases (high and low Km) but it partially restored the activity of adenylate cyclase, which is deficient in these animals. A correlation was found in the T4-treated obese animals between the ability of the epididymal adipose tissue to mobilize fatty acids, its ability to increase the intracellular levels of cyclic AMP, and the activity of adenylate cyclase in response to adrenaline stimulation.  相似文献   

18.
This work shows that unsaturated fatty acids enhance the epinephrine-stimulated adenylate cyclase activity in bovine retina. The modulating effect on the epinephrine-stimulated formation of cyclic AMP seems to be linked to the degree of unsaturation of the fatty acid. Treatment of the intact retina with docosahexaenoic acid in the concentration range 0.5 X 10(-6)-1 X 10(-3) M does not affect the enzyme activity measured in the absence of the hormone but markedly increases the cyclase activity when the tissue is incubated in the presence of 0.1 mM epinephrine. Docosahexaenoic acid enhances the maximal response to epinephrine without affecting the apparent ED50 value for this effector. Docosahexaenoic acid at 0.5 mM also increases the hormone-stimulated adenylate cyclase activity in retinal cell-free homogenate, whereas it has no effect on the epinephrine-sensitive enzyme solubilized from the membrane fraction with 1% Triton X-305. When docosahexaenoic acid-preincubated intact retina and cell-free homogenate are incubated in the presence of defatted albumin, both the observed activating effect of the fatty acid on the epinephrine-stimulated adenylate cyclase activity and the enhancement of the enzyme response to the hormone significantly diminish.  相似文献   

19.
—Adenylate cyclase activity of permeabilized neuroblastoma cells was measured by the conversion of [α32P]ATP into labelled cyclic AMP. Adenosine (10?6 - 10?4m ) induced a dose-dependent increase in cyclic AMP formation. This effect could not be accounted for either by an adenosine-induced inhibition of the phosphodiesterase activity present in the enzyme preparation, or by a direct conversion of adenosine into cyclic AMP. This indicates that the observed increase in cyclic AMP accumulation reflected an activation of adenylate cyclase. Adenosine is partially metabolized during the course of incubation with the enzyme preparation. However, none of the identified non-phosphorylated adenosine metabolites were able to induce an adenylate cyclase activation. This suggests that adenosine itself is the stimulatory agent. The apparent Km of the adenylate cyclase for adenosine was 5 ± 10?6-10?5m . Maximal activation represented 3-4 times the basal value (10-100 pmol cyclic AMP formed/10 min/mg protein). The adenosine effect was stereospecific, since structural analogues of adenosine were inactive. Adenosine increased the maximal velocity of the adenylate cyclase reaction. The stimulatory effect of adenosine was inhibited by theophylline. Prostaglandin PGE1 had a stimulatory effect much more pronounced than that of adenosine (6-10-fold the basal value at 10?6m ). Dopamine and norepinephrine induced a slight adenylate cyclase activation which was not potentiated by adenosine. It is concluded that adenosine is able to activate directly neuroblastoma cell adenylate cyclase. It seems very likely that such a direct activation is also present in intact nervous tissue and account, at least partly, for the observed cyclic AMP accumulation in response to adenosine.  相似文献   

20.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号