首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SNAP-25 (Synaptosomal Associated Protein of 25 kDa), in association with two other SNARE (soluble NSF attachment protein receptor) proteins, syntaxin and Vesicle Associated Membrane Protein, VAMP, is implicated in regulated and constitutive exocytosis in neurones and neuroendocrine cells. Our previous studies have shown that it is expressed more by noradrenergic than adrenergic chromaffin cells in the rat adrenal gland. Since certain hormones under hypophyseal control play an essential role in determining chromaffin cell phenotype, the present study examined the effect of hypophysectomy on SNAP-25 expression. Hypophysectomy was found by immunoblotting and RT-PCR analysis to increase adrenal gland SNAP-25, syntaxin-1 and VAMP-2 levels, without modifying the relative expression of SNAP-25 isoforms: immunocytochemistry showed a dramatic increase in SNAP-25 expression in former adrenergic chromaffin cells. Since adrenal glucocorticoids are considerably reduced by hypophysectomy, the effect of corticosterone replacement therapy was investigated. This did not change levels of SNAP-25, syntaxin-1 or VAMP-2. SNARE expression was also unmodified in pheochromocytoma cells treated with a synthetic glucocorticoid. In contrast, subcutaneous injection of hypophysectomized rats with thyroid hormone decreased adrenal SNAP-25, demonstrating the potential importance of the pituitary-thyroid axis. The current data thus demonstrate that the hypophysis exerts an inhibitory control on adrenal gland SNARE proteins. They suggest that glucocorticoids are unlikely to be directly responsible for this but provide evidence that thyroid hormones are implicated in this phenomenon. The putative role of hormonal regulation on SNARE function is discussed.  相似文献   

2.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

3.
To define further the molecules that control sympathoadrenal differentiation, we have investigated the effects of FGF, NGF, and glucocorticoid on cultured neonatal rat adrenal chromaffin cells. Basic FGF (bFGF), like NGF, induces cell division and neurite outgrowth from these cells. Dexamethasone inhibits neuronal differentiation but not proliferation induced by bFGF. Unlike NGF, bFGF will not support the survival of chromaffin cell-derived sympathetic neurons. However, bFGF induces a dependence on NGF. The overlapping but distinct responses to NGF and bFGF may underlie a sequence of events in sympathetic differentiation. bFGF (or another factor) may act locally in developing ganglia to stimulate mitotic expansion and initial axon outgrowth. Subsequent survival and maturation are then controlled by NGF, which is provided by peripheral targets of innervation. In the adrenal gland, glucocorticoids may permit bFGF to amplify the chromaffin population, while preventing neuronal differentiation.  相似文献   

4.
The determination of the adrenal medullary cell fate during embryogenesis   总被引:4,自引:0,他引:4  
One subset of neural crest cells, the sympathoadrenal precursors, undergoes a switch in phenotype expression, when they invade the adrenal anlagen and become associated with adrenocortical cells. To investigate the mechanisms responsible for the conversion of noradrenaline synthesizing precursors to adrenaline producing endocrine chromaffin cells we studied the role of glucocorticoids on the initial induction of adrenaline synthesis in embryonic adrenals and cultures of highly purified chromaffin precursor cells. We could show that in vivo differentiation of rat chromaffin precursors commences between 16.3 and 17.3 days of gestation. While adrenaline and the activity of the enzyme phenylethanolamine N-methyltransferase (PNMT), which converts noradrenaline to adrenaline, were present at Embryonic Day 17.3 (E17.3), they were not detectable in E16.3 adrenals. Small amounts of corticosterone were present in E16.3 adrenals and plasma, but in parallel with the initial induction of adrenaline biosynthesis, a sharp rise in organ and plasma glucocorticoid levels occurred until E17.3. Chromaffin precursor cells, isolated at E16.3 and cultured for 4 days, failed to express PNMT activity and adrenaline. However, 0.1 nM dexamethasone was already sufficient for the initial induction of adrenaline and its synthesizing enzyme. Specific glucocorticoid binding of freshly isolated chromaffin (precursor) cells revealed a developmental increase during embryogenesis, yet no glucocorticoid binding sites were detectable in chromaffin precursor cells at E16.3. They appeared at E17.3 in parallel with the initial induction of adrenaline biosynthesis and the enormous rise of adrenal and plasma corticosterone levels. We therefore conclude that glucocorticoids are essential and sufficient to trigger the differentiation of noradrenergic sympathoadrenal precursors to adrenergic chromaffin cells after a functional glucocorticoid receptor system has been established.  相似文献   

5.
Abstract: The synthetic glucocorticoid dexamethasone enhanced histamine-evoked catecholamine secretion from cultured bovine chromaffin cells. Dexamethasone enhanced the effects of histamine on both adrenergic (epinephrine-rich) and noradrenergic (norepinephrine-rich) chromaffin cells but had a more dramatic effect on noradrenergic cells. Histamine-evoked secretion in noradrenergic cells appeared to become rapidly inactivated, whereas the rate of secretion in adrenergic cells was nearly constant for up to 2 h; dexamethasone treatment attenuated the inactivation seen in noradrenergic cells. The effect of dexamethasone appeared after a lag of several hours and was maximal by 24 h. The EC50 for dexamethasone was ∼1 n M . The effect of dexamethasone was mimicked by the glucocorticoid agonist RU 28362 and was blocked by the antagonist RU 38486, indicating that the effects of these steroids were mediated by the glucocorticoid or type II corticosteroid receptor. Histamine-evoked catecholamine secretion in both dexamethasone-treated and untreated cells was blocked by the H1 histamine receptor antagonist mepyramine but was not affected by the H2 antagonist cimetidine; thus, dexamethasone appeared to enhance an H1 receptor-mediated process. In the absence of glucocorticoids, H1 receptor mRNA levels were higher in adrenergic than in noradrenergic cells. Dexamethasone increased H1 receptor mRNA levels in both cell types. The increased expression of H1 receptors presumably contributes to the enhancement of histamine-evoked catecholamine secretion by glucocorticoids. Glucocorticoids may play a physiological role in modulating the responsiveness of chromaffin cells to histamine and other stimuli.  相似文献   

6.
7.
8.
9.
Abstract: As adrenal medullary chromaffin cells express imidazoline binding sites in the absence of α2-adrenergic receptors, these cells provide an ideal system in which to determine whether imidazolines can influence catecholamine gene expression through nonadrenergic receptors. This study evaluates the ability of clonidine and related drugs to regulate expression of the gene for the epinephrine-synthesizing enzyme phenylethanolamine N -methyltransferase (PNMT) in the rat adrenal gland and in bovine adrenal chromaffin cell cultures. In vivo, PNMT and tyrosine hydroxylase (TH) mRNA levels increase in rat adrenal medulla after a single injection of clonidine. Clonidine also dose-dependently stimulates PNMT mRNA expression in vitro in primary cultures of bovine chromaffin cells, with a threshold dose of 0.1 μ M . Other putative imidazoline receptor agonists, including cimetidine, rilmenidine, and imidazole-4-acetic acid, likewise enhance PNMT mRNA production showing relative potencies that correlate with their binding affinities at chromaffin cell I1-imidazoline binding sites. The effects of clonidine on PNMT mRNA appear to be distinct from and additive with those exerted by nicotine. Moreover, neither nicotinic antagonists nor calcium channel blockers, which attenuate nicotine's influence on PNMT mRNA production, diminish clonidine's effects on PNMT mRNA. Although 100 μ M clonidine diminishes nicotine-stimulated release of epinephrine and norepinephrine in chromaffin cells, this effect appears unrelated to stimulation of imidazoline receptor subtypes. This is the first report to link imidazoline receptors to neurotransmitter gene expression.  相似文献   

10.
alpha-Melanocyte-stimulating-hormone (alpha-MSH) is an agonist at the melanocortin 3 receptor (MC3-R) and melanocortin 4 receptor (MC4-R). alpha-MSH stimulates corticosterone release from rat adrenal glomerulosa cells in vitro. Agouti-related protein (AgRP) an endogenous antagonist at the MC3-R and MC4-R, is expressed in the adrenal gland. We investigated the expression of the MC3-R and MC4-R and the role of AgRP in the adrenal gland. MC3-R and MC4-R expression was detected in rat adrenal gland using RT-PCR. The effect of AgRP on alpha-MSH-induced corticosterone release was investigated using dispersed rat adrenal glomerulosa cells. AgRP administered alone did not affect corticosterone release, but co-administration of AgRP and alpha-MSH attenuated alpha-MSH-induced corticosterone release. To investigate glucocorticoid feedback, adrenal AgRP expression was compared in rats treated with dexamethasone to controls. AgRP mRNA was increased in rats treated with dexamethasone treatment compared to controls. Our findings demonstrate that adrenal AgRP mRNA is regulated by glucocorticoids. AgRP acting via the MC3-R or MC4-R may have an inhibitory paracrine role, blocking alpha-MSH-induced corticosterone secretion.  相似文献   

11.
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.  相似文献   

12.
To determine whether similar mechanisms regulate adrenergic phenotypic expression in different cellular populations, the superior cervical sympathetic ganglion (SCG) and extra-adrenal chromaffin tissue were studied in the fetal and neonatal rat; results were compared to those previously obtained with the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT), the enzyme which converts norepinephrine to epinephrine, was used as an index of adrenergic expression. PNMT catalytic activity was initially detectable in the SCG of normal, untreated fetuses at 17.0 days of gestation (E17.0), and increased three- to fourfold until postnatal day 2. Thereafter activity decreased precipitously, and was undetectable 2 weeks after birth. Immunohistochemical studies, using specific antisera to PNMT, were employed to localize the enzyme. Immunoreactivity (PNMT-IR) was undetectable in sympathetic ganglia of control animals, suggesting that this method is less sensitive than the catalytic assay. Following glucocorticoid treatment, cells heavily stained for PNMT-IR were observed in paravertebral sympathetic ganglia, including the SCG, and in the organ of Zuckerkandl. In the SCG, PNMT-IR was present in small cells presumed to be small, intensely fluorescent (SIF) cells and was never observed in principal ganglion neurons. The increase in PNMT-IR after steroid treatment was strikingly age dependent: initiation of treatment at progressively older ages during the first week of life resulted in fewer and fewer PNMT-IR cells. No response was apparent after 1 week. Moreover, treatment of pregnant rats was associated with appearance of PNMT-IR at E18.5, but not at E16.5. After treatment from days 0 to 6 of life, PNMT-IR gradually disappeared. However, retreatment on days 24–30 caused the reappearance of PNMT-IR, suggesting that exposure to steroids at birth causes (a) an immediate increase in PNMT-IR and (b) responsiveness to steroids during adulthood. Consequently, the disappearance of PNMT-IR after exposure to steroids at birth, is not simply due to death of SIF cells. We conclude that proximity to the adrenal cortex is not necessary for initial expression of PNMT. More generally, the expression of PNMT by ganglion SIF cells parallels that in adrenal chromaffin cells since initial expression was not dependent on high local concentrations of glucocorticoids, whereas subsequent development did require high levels of the hormones. Our observations suggest that similar mechanisms regulate expression and development of the adrenergic phenotype in adrenal and sympathetic ganglia.  相似文献   

13.
Atrial natriuretic peptide (ANP) actions are mediated by highly selective and specific receptors. Three subtypes have been characterized and cloned: ANP receptor-A (or GC-A), -B (or GC-B) and -C (the so-called clearance receptor). In rat adrenal gland, the mRNA for each subtype was detected using 35S-dUTP or digoxigenin-11-dUTP specific labeled probes, and in situ hybridization at light and electron microscopic levels respectively. The three subtypes were expressed the most abundantly in the zona glomerulosa. The amount of GC-A mRNA expression, quantified using macroautoradiography and densitometry, was higher than the amounts of GC-B mRNA and ANPR-C mRNA both in zona glomerulosa and medullary of adrenal gland. At electron microscopic level, the three subtypes of ANPR were revealed in glomerulosa cells. A noticeable signal was also present in the medullary area, especially for GC-A mRNA, in adrenaline-containing chromaffin cells. No signal was detected in noradrenaline-containing chromaffin cells. The subcellular localization of the three mRNAs is similar: in the cytoplasmic matrix and in the euchromatin of the nucleus in each cell of glomerulosa, and in the same compartments of the adrenaline-containing chromaffin cells. These data indicate that the adrenal gland is an important target tissue for ANP action both in glomerulosa cells and adrenaline-containing chromaffin cells. The mRNA expression levels were different for each ANPR subtype.  相似文献   

14.
Chromogranin A is a highly acidic protein that is found in the secretory granules of many endocrine and neuronal cells. To localize bovine cell populations involved in chromogranin A biosynthesis, the distribution of the mRNA encoding this protein was determined with in situ hybridization histochemistry. In the adrenal gland, the mRNA was found in the chromaffin cells of the medulla but was absent from the cortex. The distribution of the mRNA in the medulla was uneven; cells located at the periphery were more heavily labeled than those in the center of the gland. Because the adrenal medulla is composed of several cell types, the chromogranin A-containing cells were further characterized for the presence of neuropeptide and adrenergic markers. Adjacent sections were examined for the mRNAs encoding enkephalin and phenylethanolamine N-methyltransferase (PNMT), the enzyme that catalyzes the formation of epinephrine from norepinephrine. Both mRNAs were present in a narrow band of cells at the periphery of the medulla. However, in contrast to the distribution of chromogranin A mRNA, the enkephalin and PNMT mRNAs were detected in only a small number of cells in the inner medullary region. The difference in the distribution of the enkephalin and PNMT mRNAs from that of chromogranin A suggests that the expression of these genes is differentially regulated. In addition to the adrenal gland, chromogranin A mRNA is expressed by many other tissues. In the parathyroid gland, which is rich in the mRNA but exhibits little chromogranin A-like immunoreactivity, the message was present in most cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
D J Anderson  R Axel 《Cell》1986,47(6):1079-1090
Adrenal medullary endocrine (chromaffin) cells and sympathetic neurons both derive from the neural crest. We have found that the embryonic adrenal medulla and sympathetic ganglia are both initially populated by precursors expressing neural-specific genes. By birth, however, the medulla consists largely of chromaffin cells. In primary culture, the medullary precursors have three developmental fates: in NGF they continue to mature into neurons and survive, whereas in glucocorticoid they either extinguish their neuronal properties and exhibit an endocrine phenotype, or else continue to develop into neurons but then die. These data suggest that, in vivo, the adrenal medulla develops through both the glucocorticoid-induced differentiation of bipotential progenitors and the degeneration of committed neuronal precursors, which have migrated into the gland.  相似文献   

16.
Differentiation of the noradrenergic and adrenergic phenotypes was documented in rat embryonic adrenal chromaffin cells in vivo from 12.5 days of gestation (E12.5) to term. The initial appearance of three enzymes in the catecholaminergic pathway, tyrosine hydroxylase (T-OH), dopamine-β-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT) as well as endogenous catecholamines (CA), was followed by immunohistochemistry and histofluorescence. T-OH and DBH, were employed as indices of noradrenergic expression, whereas PNMT, the epinephrine-synthesizing enzyme, was used as an index of adrenergic expression. At E12.5, T-OH, DBH, and CA were present in cells of the sympathetic ganglia at the level of the adrenal anlage. By 13.5 days, cells containing T-OH, DBH, and CA, were observed between the sympathetic ganglia and developing adrenal, and within the adrenal itself. While T-OH, DBH, and CA were present in adrenal medullary cells from the earliest stages of adrenal development, PNMT, in contrast, was undetectable in ganglion primordia, migrating cells, or within the adrenal before 17 days. PNMT initially appeared at E17 in small clusters of cells scattered throughout the adrenal. The number of cells containing PNMT and the intensity of staining increased dramatically from E17 to term.A number of experimental manipulations were employed in vivo to investigate the role of glucocorticoids in differentiation of the adrenergic phenotype. Chronic or acute treatment of mothers and/or embryos with various glucocorticoids, adrenocorticotrophic hormone (ACTH), or S-adenosylmethionine (SAM) did not result in precocious appearance of PNMT. Moreover, the initial expression of PNMT was not prevented or delayed by embryonic hypophysectomy or by treatment with inhibitors of adrenocortical function. Consequently, the initial expression of PNMT on E17.0 is not dependent on normal glucocorticoid levels, cannot be induced prematurely by glucocorticoids, and is independent of the pituitary-adrenal axis. However, the ontogenetic increase in PNMT levels after initial expression has occurred does require intact pituitary-adrenal function. Our observations suggest that different mechanisms regulate initial expression and subsequent modulation of neurotransmitter phenotype.  相似文献   

17.
Cells constituting the sympathoadrenal (SA) cell lineage originate from the neural crest and acquire a catecholaminergic fate following migration to the dorsal aorta. Subsequently, SA cells migrate to sites widely dispersed throughout the body. In addition to endocrine chromaffin and ”small intensely fluorescent” cells in adrenal glands and in extra-adrenal tissues such as the paraganglia, this lineage also includes neurones located in sympathetic ganglia and in the adrenal gland. It is widely assumed that these cells are all derived from the same precursors, which then differentiate along divergent pathways in response to different external stimuli. During embryonic differentiation, SA cells lose some of their early traits and acquire other distinguishing features. To help understand how the lineage diverges in terms of phenotype and function, this article examines the cellular expression of a variety of ”marker” proteins that characterize the individuals of the lineage. In particular, differences between adrenal medullary adrenergic and noradrenergic chromaffin cells in the expression of proteins, such as the neural adhesion molecule L1, the growth-associated protein GAP-43 and molecules involved in the secretory process, are emphasized. Factors that might differentially regulate such molecular markers in these cells are discussed. Received: 29 December 1998 / Accepted: 1 April 1999  相似文献   

18.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

19.
Adrenal chromaffin cells respond to nerve growth factor (NGF) in vitro by expressing neuronal characteristics and, over a period of 2 to 4 weeks, transdifferentiating into postmitotic sympathetic neurons. Phorbol myristate acetate (PMA) is a potent activator of protein kinase C (PKC); chronic exposure to PMA mimics the initial actions of NGF by promoting the outgrowth of neurites and increasing the incorporation of [3H] thymidine in primary cultures of adrenal chromaffin cells from young rats. PMA and NGF affect the same populations of cells and even individual neurites. These effects are specific for active phorbol ester and do not result from the release of NGF or FGF in the cultures. As in the case of NGF, the effects are inhibited by glucocorticoids. The PKC inhibitor staurosporine inhibits the effects of PMA, as well as those of NGF, in a dose-dependent manner. These results suggest that a modulation in activity of PKC is important in the neuritogenic and proliferative effects of NGF, at least for an initial period of approximately 1 week.  相似文献   

20.
Catecholamine content and in vitro activities of tyrosine hydroxylase (TH) and noradrenaline N-methyltransferase (NMT) were measured in cultures of isolated adrenal medullary cells from newborn and young postnatal rats to study the effects of the differentiation factors glucocorticoids and nerve growth factor (NGF). During the 4-day culture period the cellular catecholamine (CA) content and TH activity remained stable, whereas NMT activity dropped to about half of the initial level. In cells from 2- and 10-day-old rats 10 microM dexamethasone specifically prevented this loss in NMT activity. Furthermore, this glucocorticoid treatment increased, in a dose-dependent manner, the total CA content by 50-100% over control levels without changes in the adrenaline (A) proportion or TH activity. In contrast, NGF did not affect NMT activities at all. In cells from 10-day-old rats 100 ng/ml NFG elevated TH activity and total CA content to about 160% of controls and did not change the proportion of A. This increase in total CA content was linear with the NGF dose and required greater than 5 ng/ml NGF. In chromaffin cells from 2-day-old rats 100 ng/ml NGF affected neither TH activity nor the total content, whereas it significantly reduced the proportion of A by about 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号