首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The DNA polymerase from the Mason-Pfizer monkey virus (M-PMV), an RNA tumor virus not typical type-C or type-B, has been purified a thousand-fold over the original crude viral suspension. This purified enzyme is compared to a similarly purified DNA polymerase from the primate woolly monkey virus, a type-C virus. The two enzymes have similar template specificities but differ in their requirements for optimum activity. Both DNA polymerases have a pH optimum of 7.3 in Tris buffer. M-PMV enzyme has maximum activity with 5 mM Mg(2+) and 40 mM potassium chloride, whereas the woolly monkey virus optima are 100 mM potassium chloride with 0.8 mM Mn(2+). The apparent molecular weight of the M-PMV enzyme is approximately 110,000, whereas the woolly monkey virus polymerase is approximately 70,000. The biochemical properties of these two enzymes were also compared to a similarly purified enzyme from a type-C virus from a lower mammal (Rauscher murine leukemia virus). The results show that more similarity exists between the DNA polymerases from viruses of the same type (type-C), than between the polymerases from viruses of different types but from closely related species.  相似文献   

2.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

3.
A deoxyribonucleic acid (DNA)-dependent DNA polymerase (DNA nucleotidyltransferase) was purified 3,000-fold from the marine Pseuodomonas sp. BAL-31. The molecular weight of the native enzyme was estimated by glycerol gradient sedimentation to be 110,000. The enzyme migrated in sodium dodecyl sulfate-acrylamide gels as a single polypeptide with a molecular weight of 105,000. An absolute requirement for divalent cation was satisfied by Mg2+ or Mn2+ at concentrations of 1 mM. Monovalent cations at concentrations higher than 50 mM showed an inhibitory effect. The polymerase activity was resistant to N-ethylmaleimide and showed a wide pH optimum.  相似文献   

4.
5.
Studies on Vaccinia Virus-Directed Deoxyribonucleic Acid Polymerase   总被引:10,自引:9,他引:1       下载免费PDF全文
A vaccinia-directed deoxyribonucleic acid (DNA) polymerase has been partially purified from the cytoplasmic fractions of virus-infected HeLa cells. The utilization of natural and synthetic templates by this enzyme resembles that of the host cell DNA-dependent DNA polymerases. The vaccinia DNA polymerase cannot copy ribopolymers or ribonucleic acid but is very effective with an "activated" DNA as template. An exonuclease preferring single-stranded DNA as substrate is found in the most highly purified preparations of the enzyme. The molecular weight of the vaccinia DNA polymerase seems to be about 110,000. The viral DNA polymerase is also found to be associated with purified, infected cell nuclei, and this association may be due, at least in part, to nonspecific adsorption of the vaccinia DNA polymerase by nuclei.  相似文献   

6.
Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.  相似文献   

7.
8.
RNA-directed DNA polymerase was purified from spleens of Balb/c and NMRI mice infected with Rauscher murine leukemia virus. The method includes cell fractionation and lysis of microsomal fraction, chromtography on Sephadex G-200 and phosphocellulose. Estimation of molecular weight from the sedimentation rate of the purified enzyme in a glycerol gradient was consistent with a structure containing one polypeptide with a molecular weight of 70,000. Purified RLV DNA polymerase from spleen could transcribe purified DNA polymerase from purified virions. This simple preparation method offers a procedure for large scale preparation of the RNA-directed DNA polymerase which can be used for synthesis of DNA complementary to mRNA.  相似文献   

9.
An RNA-directed DNA polymerase was purified from baboon endogenous type-C virus by successive column chromatography on DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 8.0, a Mn2+ optimum of 1 mM, and a KCl optimum of 40 mM. The purified enzyme transcribes heteropolymeric regions of viral 60--70 S RNA isolated from different type-C viruses. The purified enzyme is immunologically related to a similarly purified polymerase from the cat endogenous type-C virus RD114.  相似文献   

10.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

11.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

12.
Biochemical characterization of the herpes simplex virus (HSV) DNA polymerase, a model DNA polymerase and an important target for antiviral drugs, has been limited by a lack of pure enzyme in sufficient quantity. To overcome this limitation, the HSV DNA polymerase gene was introduced into the baculovirus, Autographa californica nuclear polyhedrosis virus, under the control of the polyhedrin promoter to give rise to a recombinant baculovirus, BP58. BP58-infected Spodoptera frugiperda insect cells expressed a polypeptide that was indistinguishable from authentic polymerase by several immunological and biochemical properties, at levels approximately ten-fold higher per infected cell than found in HSV-infected Vero cells. The DNA polymerase was purified to apparent homogeneity from BP58-infected insect cells. Using activated DNA as primer-template, the purified enzyme exhibited specific activity similar to that of enzyme isolated from HSV-infected Vero cells, indicating that additional polymerase-associated proteins from HSV-infected cells are not critical for activity with this primer-template. 3'-5' exonuclease activity co-purified with the BP58-expressed HSV DNA polymerase, demonstrating that this activity is intrinsic to the polymerase polypeptide. The purified enzyme also exhibited RNAse H activity. The recombinant baculovirus should permit detailed biochemical and biophysical studies of this enzyme.  相似文献   

13.
14.
15.
DNA Polymerase in Virions of a Reptilian Type C Virus   总被引:1,自引:1,他引:0       下载免费PDF全文
A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made.  相似文献   

16.
Genetic experiments have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication, and a number of studies have suggested that these two proteins specifically interact. We have confirmed and extended these findings. The viral DNA polymerase from HSV-1-infected cells has been purified as a complex containing equimolar quantities of the UL30 (Pol, the catalytic subunit) and UL42 polypeptides. Sedimentation and gel filtration analyses of this complex are consistent with the idea that the complex consists of a heterodimer of Pol and UL42. A complex with identical physical and functional properties was also purified from insect cells coinfected with recombinant baculoviruses expressing the two polypeptides. Therefore, the formation of the Pol-UL42 complex does not require the participation of any other HSV-encoded protein. We have compared the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells. The specific activity of the catalytic subunit alone was nearly identical to that of the complex when assayed on activated DNA. When assayed on a defined template such as singly primed M13 DNA, however, the combination of Pol and UL42 utilized fewer primers and formed larger products than Pol alone. Template challenge experiments demonstrated that the Pol-UL42 complex was more highly processive than Pol alone. Our data are consistent with the idea that the UL42 polypeptide is an accessory subunit of the DNA polymerase that acts to increase the processivity of polymerization.  相似文献   

17.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

18.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

19.
Mouse L cell fibroblasts were infected with vaccinia virus and labeled 2 to 3 h postinfection with [35S]methionine. Labeled proteins were fractionated on native and denatured DNA-cellulose columns and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Twenty-four 90,000 to 12,500, were detected. VDP-12A (molecular weight, 29,750) had affinity for denatured but not native DNA, and its synthesis was dependent on viral DNA replication. VDP-20 (molecular weight, 41,000) bound very tightly to native and denatured DNA and was displaced only after boiling the protein-DNA-cellulose matrix in 1% sodium dodecyl sulfate. VDP-8,-11,-12,-13, -and-14 behaved electrophoretically like the polypeptide species previously shown to be present in DNA-protein complexes prepared from infected cells. The molecular weights of VDP-10 (50,000), VDP-11 (36,000), and VDP-8 (67,000) were similar to the polypeptide subunits of polyadenylate polymerase and phosphohydrolase I, enzymes purified from virions which have also been shown to have affinity for DNA.  相似文献   

20.
An RNA directed DNA polymerase was purified over 2500 fold from gibbon ape leukemia virus by successive column chromatography on Sephadex G100, DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a Mn2+ optimum of 0.8 mM, and KCl optimum of 80 mM. The purified enzyme transcribes heteropolymeric regions of viral 60-70 S RNA isolated from avian myeloblastosis virus, Rauscher murine leukemia virus and simian sarcoma virus and it is inhibited by antiserum prepared against either gibbon ape leukemia virus or simian sarcoma virus DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号