首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ecological functions of volatile organic compounds in aquatic systems   总被引:1,自引:0,他引:1  
In terrestrial ecosystems, volatile organic compounds (VOCs) are widely acknowledged as an important group of infochemicals. They play a major role in pollinator attraction by terrestrial plants and as insect pheromones. Furthermore, they are the mediating agent of so-called 'tritrophic interactions'. When plants are attacked by herbivorous insects, volatile signal substances are emitted, which act as attractants for parasitoids that kill the herbivores, thereby protecting the plant from herbivory. Despite the generally acknowledged importance of VOCs in terrestrial chemical ecology, their functions in aquatic food webs are largely unknown. VOCs produced by algae and cyanobacteria are a major concern in water processing, since aquatic primary producers are the reason for regularly encountered taste and odour problems in drinking water. Only very recently, research in aquatic chemical ecology has started to investigate possible ecological functions for the production of VOCs by algae and cyanobacteria. Volatile aldehydes released by wounded cells of marine planktonic diatoms seem to act as defensive compounds against herbivorous copepods on the population level. Just recently, it was found that VOCs released from benthic algae and cyanobacteria can be utilised as food and/or habitat finding cues by aquatic invertebrates such as freshwater gastropods and nematodes. Here, I review concepts and recent experimental studies on the ecological functions of such VOCs in aquatic ecosystems. Understanding the factors that lead to the liberation of volatile compounds is an essential prerequisite to properly assessing their ecological functions. It appears that (similar to terrestrial plant-herbivore interactions) VOCs can also play a steering role for both attraction and defence in aquatic ecosystems.  相似文献   

2.
左照江 《水生生物学报》2017,41(6):1369-1379
在水域生态系统中, 藻类释放的挥发性有机化合物(VOCs)种类众多, 主要有萜烯类、醛类、醇类、酯类、酮类、脂肪族烃、芳香族、硫化物和卤化物。这些VOCs通过不同的次生代谢途径形成, 可为多种环境因素所诱导产生。在逆境胁迫下, VOCs具有提高藻细胞抗逆性的作用。当VOCs释放到水体中后, 可为同种藻细胞传递胁迫信息, 使感受细胞做好防御准备。对于异种藻细胞, VOCs通过化感作用抑制其生长, 从而保证VOCs释放者的竞争优势。此外, VOCs还可驱避捕食者, 保护藻细胞免受伤害。未被感受者利用的VOCs经挥发进入大气层后, 会参与水域上空二次有机气溶胶的形成。通过对藻类VOCs的种类、形成途径、诱导释放因素及其生态作用进行综述, 以期对藻类VOCs的研究有所帮助。  相似文献   

3.
Biodegradation of volatile organic compounds by five fungal species   总被引:4,自引:0,他引:4  
Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids ( n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxiiproduced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application.  相似文献   

4.
The role and use of olfactory cues by penguins is largely under‐investigated, with only a few studies suggesting that odours are involved in prey detection, orientation and for interspecific communication. This also applies to King Penguins Aptenodytes patagonicus where little is known about their chemoreception abilities and, subsequently, the role of odours in their behavioural ecology. Here, we investigated the chemical composition of volatile organic compounds (VOCs) from feathers of King Penguins in the Kerguelen Archipelago and their potential to carry information on identity and sex. We analysed VOCs using direct thermal desorption, a novel approach for extracting volatile compounds directly from solid matrices. We were only able to test at desorption temperatures of 70 and 100 °C to optimize conditions for VOC analysis. We found a profile of 26 VOCs present in most individuals, which varied significantly between individuals but not between sexes. Results suggested that VOCs could possibly be used by King Penguins to locate the colony and recognize individuals, if similar VOCs are also present at ambient conditions. Further studies and behavioural experiments are encouraged to explore olfactory‐based communication in this species.  相似文献   

5.
钟涛  王智荣  杜木英 《微生物学报》2021,61(7):1771-1785
随着化学杀菌剂弊端的日益凸显,生物防治已逐渐成为采后果蔬病害控制的研究和开发热点.其中,很多微生物产生的多种挥发性物质(volatile organic compounds,VOCs),能显著抑制多种病原菌的生长繁殖,有效控制采后果蔬病害.由于微生物源VOCs具有有效、安全、环保、易降解和无残留等优点,越来越受到各国研...  相似文献   

6.
植物源VOCs及其对陆地生态系统碳循环的贡献   总被引:1,自引:0,他引:1  
何念鹏  韩兴国  潘庆民 《生态学报》2005,25(8):2041-2048
综述了近20a来国内外关于植物源VOCs的研究进展。分析了植物源VOCs主要组成成分、生理-生态基础,以及影响植物VOCs释放速率的主要因素。重点探讨了植物源VOCs对陆地生态系统碳循环的潜在重要性,提出一些值得关注的问题。  相似文献   

7.
Stir bar sorptive extraction (SBSE) was applied in head space mode (HS), coupled with GC/MS, to compare the aroma profile of three truffle species. A total of 119 volatile organic compounds (VOCs) were identified from the fruiting bodies, of which 70 were not yet described in truffles and 60 in fungi. VOCs profile showed a high intra- and inter-specific variability, with alcohols and sulfur compounds dominating the HS of Tuber borchii and, alcohols, aldehydes and aromatic compounds the HS of T. melanosporum and T. indicum. Despite these variations, eight VOCs markers could be identified allowing the discrimination of the three species. Additionally, T. borchii and T. melanosporum both distinguished themselves from T. indicum due to higher aroma content and larger variety of sulfur containing compounds. Mycelial VOCs production was also investigated under two cultural conditions and led to the identification of eight VOCs. On one side, seven of them were also detected in the fruiting body, confirming their mycelial origin. On the other side, the total absence of some class of compounds (i.e. sulfur) in the mycelium raises questions about their origins in the fruiting bodies and confirms deep metabolic changes between the reproductive (fruiting body) and vegetative (mycelium) stages.  相似文献   

8.
One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P < 0.05) the perception of dairy, spoiled-meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall.  相似文献   

9.
Oribatid mites are primarily terrestrial. Only about 90 species (less than 1% of all known oribatid species) from 10 genera are truly aquatic, with reproduction and all stages of their life cycle living in freshwater. Adaptation to aquatic conditions evolved independently in different taxa. However, many terrestrial species can also be found in aquatic habitats, either as chance stragglers from the surrounding habitats, or from periodic or unpredictable floodings, where they can survive for long periods. In spite of their low species richness aquatic oribatids can be very abundant in different freshwater habitats as in lentic (pools, lakes, water-filled microhabitats) or flowing waters (springs, rivers, streams), mainly on submerged plants. The heavily sclerotized exoskeletons of several species enables subfossil or fossil preservation in lakes or bog sediments. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

10.
Cyanobacteria produce numerous volatile organic compounds (VOCs), such as β-cyclocitral, geosmin, and 2-methylisoborneol, which show lytic activity against cyanobacteria. Among these compounds, only β-cyclocitral causes a characteristic color change from green to blue (blue color formation) in the culture broth during the lysis process. In August 2008 and September 2010, the lysis of cyanobacteria involving blue color formation was observed at Lake Tsukui in northern Kanagawa Prefecture, Japan. We collected lake water containing the cyanobacteria and investigated the VOCs, such as β-cyclocitral, β-ionone, 1-propanol, 3-methyl-1-butanol, and 2-phenylethanol, as well as the number of cyanobacterial cells and their damage and pH changes. As a result, the following results were confirmed: the detection of several VOCs, including β-cyclocitral and its oxidation product, 2,2,6-trimethylcyclohexene-1-carboxylic acid; the identification of phycocyanin based on its visible spectrum; the lower pH (6.7 and 5.4) of the lysed samples; and characteristic morphological change in the damaged cyanobacterial cells. We also encountered the same phenomenon on 6 September 2013 in Lake Sagami in northern Kanagawa Prefecture and obtained almost the same results, such as blue color formation, decreasing pH, damaged cells, and detection of VOCs, including the oxidation products of β-cyclocitral. β-Cyclocitral derived from Microcystis has lytic activity against Microcystis itself but has stronger inhibitory activity against other cyanobacteria and algae, suggesting that the VOCs play an important role in the ecology of aquatic environments.  相似文献   

11.
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.  相似文献   

12.
In order to make clear the functions of plant volatile organic compounds (VOCs) on bacteriostasis and air decontamination, we analyzed the composition and content of VOCs in Pinus tabulaeformis Carr., P. bungeana Zucc., Sabina chinensis Antoine, Picea koraiensis Nakai, and Cedrus deodara G. Don under near-natural conditions using the thermal-desorption cold trap gas chromatography/mass spectrometer technique. The effects of the VOCs on airborne microorganisms were investigated using the method of natural sedimentation. Results showed that the major VOCs were as follows: limonene, β-pinene, α-pinene,and α-caryophyllene in Pinus tabulaeformis and P. bungeana; limonene, borneol acetate, β-pinene, myrcene, and tricylene in S. chinensis; limonene, α-pinene, myrcene, camphene, and β-pinene in Picea koraiensis; and limonene, 2, (10)-pinene, α-pinene, and myrcene in C. deodara. These VOCs and the corresponding foliar extracts inhibited the growth of bacteria and stimulated the growth of fungi. Experimental data using monomers of the VOCs demonstrated that limonene, β-pinene, and three aldehydes could significantly inhibit bacterial growth, suggesting an inhibitory effect of VOCs on the growth of airborne microorganisms in the five conifer species. The bacteriostasis and air-decontaminating effects of plant VOCs are further discussed in terms of their chemical composition.  相似文献   

13.
The aim of this study was to determine whether overexpression of stress proteins (SPs) could be a sensitive biomarker for cell injury due to exposure to low doses of volatile organic compounds (VOCs) such as benzene, ethylbenzene, toluene, xylene, and chlorinated derivatives (ClB). Sublethal and cytotoxic threshold concentrations of the VOCs were determined by studying the growth rate of normal (fibroblasts) or tumor-derived human cell lines (A549, HepG2) exposed for 4 days to VOCs. Changes in SP expression as a function of concentrations were investigated by Western blotting.VOC toxicity was found to be correlated with their degree of chlorination and their hydrophobicity. Cytotoxic threshold concentrations (no-observed effect concentration, NOEC) were found to be similar for the three cell lines. It was observed that using a mixture of VOCs, each of them at concentration below the NOEC, resulted in an actual toxicity to the cells. This finding reveals a synergistic effect and should be taken into account when assessing threshold risk and exposure limit values in the worker's environment when several pollutants may be present. HSP72 and HSP90 expression levels were not affected whereas GRP78 expression was increased by all the VOCs. Taking into account the specific molecular function of GRP78, it suggests that VOC exposure results in misfolded or underglycosylated protein accumulation in the endoplasmic reticulum. GRP78 overexpression was closely related to the magnitude of growth inhibition due to increasing concentrations of each VOC. The overexpression was found to be significant for concentrations 5 to 30 times higher than NOEC, indicating that, under our experimental conditions, GRP78 expression cannot be considered as a sensitive biomarker of exposure to environmental VOCs.  相似文献   

14.
Headspace analysis combined with high-resolution gas chromatography and detection by mass spectrometry was evaluated for the analysis of 53 volatile organic compounds (VOCs) in river waters, waste waters and treated water samples down to 0.1 microgl(-1) concentration levels. The conditions optimised included sample thermostatting time and temperature, autosampler parameters and the nature of salt, added to the sample. The pollutions origin and their seasonal rippling have been done. It was shown that the content of VOCs in river water mainly correlates to the content of these compounds in waste waters, which shows the anthropogenic character of the pollutions.  相似文献   

15.
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds which is necessary for avoiding possible damage to non-target plants. Volatile organic compounds (VOCs) emitted by plants likely play an important role in determining which plants attract and are accepted by a prospective arthropod agent. However, current methods to evaluate host plant specificity usually rely on empirical choice and no-choice behavioural experiments, with little knowledge about what chemical or physical attributes are stimulating the insect. We conducted experiments to measure the quantitative and qualitative effects on emission of VOCs caused by simple mechanical damage to leaves of plants known to differ in suitability and attractiveness to a prospective agent. More VOCs were detected from damaged than from undamaged leaves for all three species tested. Discriminant analysis was able to correctly distinguish the taxonomic identity of all plants based on their VOC profiles; however, the VOCs that discriminated species among undamaged leaves were completely different from those that discriminated among damaged leaves. Thus, damaged and undamaged plants present different VOC profiles to insects, which should be considered when conducting host plant specificity experiments. An unacceptable non-target plant, Centaurea cineraria, emitted all except one of the VOCs that were emitted by its preferred host plant, Centaurea solstitialis, indicating the importance of compounds that are repellant in host plant specificity. Centaurea cyanus emitted fewer VOCs than C. solstitialis, which suggests that it lacked some VOCs important for host plant recognition.  相似文献   

16.
Jana Moelzner  Patrick Fink 《Oikos》2015,124(12):1603-1608
Chemical information transfer is a major agent in the regulation of interspecific and intraspecific interactions in natural ecosystems. One important group of such infochemicals both in terrestrial and aquatic ecosystems are so‐called volatile organic compounds (VOCs) that can evoke behavioral or physiological responses like predator avoidance and mate or host location. In previous work, we have demonstrated that freshwater gastropods utilize VOCs released from benthic algae as food finding cues, although the specific nature of the VOC release and perception were not yet clear. Therefore we tested whether gastropod grazing on biofilms leads to algal cell damage and a subsequent liberation of wounding‐associated VOCs. In bioassays we investigated the algal VOC bouquet level which is necessary to elicit a behavioural response of freshwater gastropods. The results of the liberation experiment showed that gastropod grazing leads to VOCs release. We also found that a certain threshold level of volatiles is necessary for snails to recognise the volatile infochemicals and subsequently respond with a directed foraging behaviour towards the odour. Finally, a calculated mass balance model demonstrated that the grazer mediated VOC release produced a signal concentration that is sufficient to be recognized by conspecifics and utilized as foraging infochemicals. The emission of ecologically relevant volatiles through snail grazing with subsequent attraction of other gastropod grazers to algal biofilms indicates an important but so far understudied chemical signaling mechanism of ecological importance.  相似文献   

17.
Temporary dewatering constitutes a drastic change in conditions for aquatic vegetation. Species’ sustained performance under these conditions relies partly on their ability to produce a terrestrial phenotype. Such adaptations may include the development of self-supporting aboveground organs with higher dry matter content enabling plants to withstand gravity and smaller leaves with thicker cuticle to reduce evapotranspiration, leading to lower specific leaf area, higher leaf-construction costs and consequently higher leaf life span. The ability of aquatic plant species to produce a terrestrial-adapted phenotype may differ according to growth form and evolutionary history. The objectives of this study were to (1) measure the effects of dewatering on aquatic plant performance, (2) determine how growth form and phylogenetic position affect performance, and (3) relate plant performance to plasticity. To meet these objectives, we experimentally studied aquatic plant responses to dewatering by measuring survival, growth, and a set of traits describing the morphology and leaf-resource economy of eight aquatic plant species with contrasting phylogeny and growth forms. The ability of aquatic plants to withstand dewatering differed according to phylogeny but not to growth form. The eudicots presented high survival and similar growth rates under terrestrial compared to aquatic conditions, while monocots generally did not survive dewatering. These species produced phenotypic adjustments, such as denser aboveground organs and leaf plasticity, which can explain the maintenance of similar growth rates under terrestrial conditions. The relatively strong plasticity and performance of eudicots in terrestrial habitats suggests that their optimal niche is the interface between aquatic and terrestrial ecosystems.  相似文献   

18.
19.
Indirect defence via tritrophic interactions   总被引:12,自引:0,他引:12  
Many plants interact with carnivores as an indirect defence against herbivores. The release of volatile organic compounds (VOCs) and the secretion of extrafloral nectar (EFN) are induced by insect feeding, a response that is mediated by the plant hormone, jasmonic acid. Although VOCs mainly attract predatory mites and parasitic wasps, while EFN mainly attracts ants, many more animal-plant interactions are influenced by these two traits. Other traits involved in defensive tritrophic interactions are cellular food bodies and domatia, which serve the nutrition and housing of predators. They are not known to respond to herbivory, while food body production can be induced by the presence of the mutualists. Interactions among the different defensive traits, and between them and other biotic and abiotic factors exist on the genetic, physiological, and ecological levels, but so far remain understudied. Indirect defences are increasingly being discussed as an environmentally-friendly crop protection strategy, but much more knowledge on their fitness effects under certain environmental conditions is required before we can understand their ecological and evolutionary relevance, and before tritrophic interactions can serve as a reliable tool in agronomy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号