首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of branched copolymers of polyethylene glycol and chitosan (PEG-chitosan) as stabilizing agents for anionic liposomes was shown to improve considerably liposomes storage stability. In the course of the work, an efficient and convenient approach to synthesis of PEG-chitosan copolymers through chemical modification of chitosan amino groups with monomethoxy-PEG-N-hydroxysuccinimidyl succinate (mPEG-suc-NHS) was developed. Chitosan with varying degree of PEGylation were obtained and used as stabilizing agents for anionic liposomes prepared of dipalmitoylphosphatidylcholine-cardiolipin, 80/20 by weight. The molecular mechanism of complex formation between the anionic liposomes and PEG-chitosan was studied by methods of FTIR spectroscopy and dynamic light scattering. Phosphate and carbonyl groups were found to be the main sites of the aminopolysaccharide binding. Stabilization of the complexes is mainly achieved through electrostatic interactions between anionic groups of cardiolipin and free amino groups of PEG-chitosan. The method of liposome stabilization is promising for the development of new drug delivery systems.  相似文献   

2.
Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.  相似文献   

3.
Polymers and copolymers of horseradish root peroxidase (HRP) and Penicillium funiculosum 46.1 glucose oxidase (GO) have been synthesized and their catalytic properties have been characterized (free and immobilized forms of each enzyme were studied). The cooxidation reaction of phenol and 4-aminoantipyrin (4-AAP), performed in an aqueous medium in the presence of equimolar amounts of GO and HRP, was characterized by effective K M and k cat of 0.58 mM and 20.9 s?1 (for phenol), and 14.6 mM and 18.4 s?1 (glucose), respectively. The catalytic efficiency of polymerization products (PPs) of GO (GO-PPs) depended on the extent of their aggregation. The combinations GO + HRP-PP and HRP + GO-PP, as well as the copolymer HRP*-GO-PP, proved promising as reagents for enzyme-based analytical systems. When adsorbed on aluminum hydroxide gels, GO-PPs exhibited higher catalytic activity than the non-polymeric enzyme. Maximum retention of GO-PP activity on the inorganic carrier was observed in the case of GO-PP copolymers with an activated HRP. Polymerization of HRP in the presence of a zinc hydroxide gel, paralleled by HRP-PP immobilization onto the gel, increased both the activity of the enzyme and its operational stability.  相似文献   

4.
Diabetes mellitus (DM), a chronic multifarious metabolic disorder resulting from impaired glucose homeostasis has become one of the most challenging diseases with severe life threat to public health. The inhibition of α-glucosidase, a key carbohydrate hydrolyzing enzyme, could serve as one of the effective methodology in both preventing and treating diabetes through controlling the postprandial glucose levels and suppressing postprandial hyperglycemia. In this context, three series of diamine-bridged bis-coumarinyl oxadiazole conjugates were designed and synthesized by one-pot multi-component methodology. The synthesized conjugates (4a–j, 5a–j, 6a–j) were evaluated as potential inhibitors of glucosidases. Compound 6f containing 4,4′-oxydianiline linker was identified as the lead and selective inhibitor of α-glucosidase enzyme with an IC50 value of 0.07 ± 0.001 μM (acarbose: IC50 = 38.2 ± 0.12 μM). This inhibition efficacy was ∼545-fold higher compared to the standard drug. Compound 6f was also emerged as the lead molecule against intestinal maltase-glucoamylase with good inhibition strength (IC50 = 0.04 ± 0.02 μM) compared to acarbose (IC50 = 0.06 ± 0.01 μM). Against β-glucosidase enzyme, compound 6 g was noted as the lead inhibitor with IC50 value of 0.08 ± 0.002 μM. Michaelis–Menten kinetic experiments were performed to explore the mechanism of inhibition. Molecular docking studies of the synthesized library of hybrid structures against glucosidase enzyme were performed to describe ligand-protein interactions at molecular level that provided an insight into the biological properties of the analyzed compounds. The results suggested that the inhibitors could be stabilized in the active site through the formation of multiple interactions with catalytic residues in a cooperative fashion. In addition, strong binding interactions of the compounds with the amino acid residues were effective for the successful identification of α-glucosidase inhibitors.  相似文献   

5.
α-Chymotrypsin was chemically modified with methoxypoly(ethylene glycol) (PEG) of different molecular weights (700, 2,000, and 5,000 Da) and the amount of polymer attached to the enzyme was varied systematically from 1 to 9 PEG molecules per enzyme molecule. Upon PEG conjugation, enzyme catalytic turnover (k cat) decreased by 50% and substrate affinity was lowered as evidenced by an increase in the K M from 0.05 to 0.19 mM. These effects were dependent on the amount of PEG bound to the enzyme but were independent of the PEG size. In contrast, stabilization toward thermal inactivation depended on the PEG molecular weight with conjugates with the larger PEGs being more stable.  相似文献   

6.
Covalent SK-PEG2 and SK-PEG5 conjugates with various degrees of modification of the protein amino groups were obtained by variation of the duration of streptokinase (SK) incubation with activated polyethylene glycol (M 2 and 5 kDa, PEG2 and PEG5); their properties were studied in comparison with the properties of unmodified SK in vitro. SK-PEG2 and SK-PEG5 conjugates with the highest stability in plasma retaining 80% of initial fibrinolytic activity were formed at modification degrees of 54 and 52%, respectively. Interaction of the conjugates with equimolar plasminogen resulted in the formation of plasmin (Pm) activator complexes Pm·SK-PEG2 and Pm·SK-PEG5 with the maximum amidase activity being the same as that of Pm complex with native SK. Catalytic efficiency of plasminogen activation (k Pg/K Pg) was found to be slightly higher (2.84 min?1 μM?1) in case of Pm·SK-PEG2 complex and slightly lower, in case of the Pm·SK-PEG5 complex (1.17 min?1 μM?1), if compared to that of the unmodified complex Pm·SK (2.1 min?1 μM?1). Investigation of lysis kinetics of human plasma clot and depletion of plasminogen and fibrinogen plasma levels under the effect of equal doses of SK in free and conjugated forms demonstrated that SK-PEG2 and SK-PEG5 conjugates possess high thrombolytic activity (89 and 72% to the activity of free SK, respectively) and cause 3.5–4-fold lower side effects than free SK. The SK-PEG2 and SK-PEG5 conjugates with increased stability in plasma and reduced side effects may be used in therapy of thrombotic disorders.  相似文献   

7.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

8.
Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer–dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia.  相似文献   

9.
Three types of beaded polyethylene glycol polyacrylamide copolymers (PEGA) with a high content of polyethylene glycol (PEG) were synthesized by inverse suspension polymerization and characterized for peptide synthesis and with respect to their physical properties. Several peptides of high purity have been synthesized on the resin. The properties which were determined were loading of amino group, swelling, bead size distribution, porosity, flexibility and compatibility with active biomolecules. A loading of 0.35 mmol/g has been obtained and the swelling was excellent in solvents of various polarities ranging from water to dichloromethane. The 13C-NMR T1-relaxation times of a resin containing a peptide were determined in DMSO-d6 and the resin was found to exhibit a behaviour similar to the components in free solution.  相似文献   

10.
l-Asparaginase (EC 3.5.1.1.) activity has been detected in crude extracts of Lupinus arboreus young leaves, root tips, flower buds, and developing seeds. The enzyme was also present in Lupinus angustifolius root tips, developing nodules, and developing seeds. The asparaginase from each of these tissues had the same electrophoretic mobility on polyacrylamide gels and a Km of 6–8 mm for asparagine. In extracts other than those of the developing seeds, asparaginase activity was dependent upon the inclusion of K+ ion and a sulfhydryl protectant in the extraction buffer. No asparaginase activity was detected in mature leaves, in the plant fraction of nodules that were fixing nitrogen, nor in root tissue further than 1.5 cm from the root tip. Asparaginase has been purified 326- and 230-fold from L. arboreus and L. angustifolius developing seeds, respectively. A molecular weight of 75,000 was obtained by gel filtration. An apparent Km of 6.6 and 7.0 mm for asparagine was determined for the purified L. arboreus and L. angustifolius asparaginases, respectively. Of the amides, nitriles, and hydroxamates examined, the L. arboreus enzyme hydrolyzed only l-asparagine and dl-aspartyl hydroxamate. This same enzyme was inhibited by d-asparagine, 5-diazo-4-oxo-l-norvaline, dl-aspartyl hydroxamate, d-and l-aspartate, 3-cyano-l-alanine, glycine, and cysteine. Glutamine, glutamine analogs, and a number of other amino acids, amides and amines did not inhibit the L. arboreus asparaginase.  相似文献   

11.
N-hydroxysuccinimide ester of monomethoxy polyethylene glycol hemisuccinate was synthesized. It acylated amino groups in a molecule of recombinant L-asparaginase from Erwinia carotovora. A method of L-asparaginase modification by the obtained activated polyethylene glycol derivative was developed. The best results were produced by modification of the enzyme with a 25-fold excess of reagent relative to the enzyme tetramer. The modified L-asparaginase was isolated from the reaction mixture by gel filtration on Sepharose CL-6B. The purified bioconjugate did not contain PEG unbound to the protein, demonstrated high catalytic activity, and exhibited antiproliferative action on cell cultures.  相似文献   

12.
Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7–8 and temperature 35–40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10−3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes.  相似文献   

13.
The recombinant producer strain expressing Rhodospirillum rubrum L-asparaginase (RrA) has been obtained and a purification procedure of RrA has been developed. The purified enzyme, RrA, has the following biochemical and catalytic characteristics: Km for L-Asn of 0.22 mM, pH optimum at 9.2; temperature optimum at 54°C, pI = 5.1. RrA exhibited a significant cytotoxic effect towards the following cell lines: K562 (IC50 = 1.80 U/mL), DU145 (IC50 = 9.19 U/mL), and MDA-MB-231 (IC50 = 34.62 U/mL). Comparative analysis employing E. coli L-asparaginase II type (EcA) and Erwinia carotovora L-asparaginase (EwA) has shown that the enzyme cytotoxicity towards these cell lines decreased in the following order: EcA > RrA > EwA. Daily administration of RrA (4000 U/kg) to L5178y bearing mice for 10 days (total dose of 40000 U/kg) showed T/C = 172. Data obtained suggest that RrA may be referred to intracellular L-asparaginases with low L-glutaminase activity and marked antiproliferative effect.  相似文献   

14.
The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation.  相似文献   

15.
A series of conjugates has been synthesized by the reaction of methylpheophorbide a with ortho-alkylaminomethyl derivatives of 2-isobornyl-4-methylphenol; the terpenophenol fragment in the conjugates is attached to the methylpheophorbide a macrocycle by an amide bond formed upon the amidation of the 13(2)-ester group. A scanning electron microscopy study of the surface structure of erythrocytes incubated with these compounds confirmed their ability to interact with the cell membrane. It was found, based on the ability of the conjugates to inhibit the H2O2-induced hemolysis of erythrocytes and slow down the accumulation of the secondary lipid peroxidation products, that they possess membrane-protecting and antioxidant properties.  相似文献   

16.
The proportion of acid and basic amino acid residues obtained for two homogeneous isoenzymes of apyrase isolated from different clonal varieties of Solanum tuberosum (Pimpernel and Desirée) was essentially the same. This does not agree with the difference in pI values observed. Treatment with asparaginase and glutaminase caused partial inactivation of both enzyme activities in both isoenzymes, and pI values were changed, but not equalized. The differences in pI values of the native isoenzymes may still be attributed to different proportions of glutamine and asparagine in the primary structure. Leucine is the amino-terminal residue in both isoenzymes. Both have two disulphide bridges and one buried sulphydryl group which is not essential for enzyme activity. Differences in pI values should thus be attributed to factors other than amino acid composition.  相似文献   

17.
The properties of laccase isolated from Schinus molle, including its MW, amino acid and carbohydrate composition, are described. The enzyme is distinct from Rhus laccase both in Km and in carbohydrate composition.  相似文献   

18.
Permeable resins cross-linked with long PEG chains were synthesized for use in solid-phase enzyme library assays. High molecular weight bis-amino-polyethylene glycol (PEG) 4000, 6000, 8000 were synthesized by a three-step reaction starting from PEG-bis-OH. Macromonomers were synthesized by partial or di-acryloylation of bis-amino-PEG derivatives. Bis/mono-acrylamido–PEG were copolymerized along with acrylamide by inverse suspension copolymerization to yield a less cross-linked resin (Type I, compounds 6–9 ). Furthermore, acryloyl–sarcosin ethyl ester was co-polymerized along with bis-acrylamido PEG to obtain more crosslinked capacity resin (Type II, compounds 13–19 ). N,N-Dimethylacrylamide was used as a co-monomer in some cases. The polymer was usually obtained in a well-defined beaded form and was easy to handle under both wet and dry conditions. The supports showed good mechanical properties and were characterized by studying the swelling properties, size distribution of beads, and by estimating the amino group capacity. Depending on the PEG chain length, the monomer composition and the degree of cross-linking the PEGA supports showed a high degree of swelling in a broad range of solvents, including water, dichloromethane, DMF, acetonitril, THF and toluene; no swelling was observed in diethyl ether. The PEGA resins (Type I ) with an amino acid group capacity between 0.07 and 1.0 mmol/g could be obtained by variation of the monomer composition in the polymerization mixture. Fluorescent quenched peptide libraries were synthesized on the new polymer using a multiple column library synthesizer and incubated with the matrix metalloproteinase MMP-9 after it had been activated by 4-aminophenyl mercuric acetate resulting in 67/83 kDa active enzyme. The bright beads were separated manually under a fluorescence microscope and sequenced to obtain peptide substrates for MMP-9. After treatment with ethylene diamine, high-loaded resins (Type II ) have been employed in continuous flow peptide synthesis to yield peptides in excellent yield and purity. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Seven polyamine conjugates of a tri(p-carboranylmethylthio)tetrafluorophenylporphyrin were prepared in high yields by sequential substitution of the p-phenyl fluoride of tetrakis(pentafluorophenyl)porphyrin (TPPF), and investigated as boron delivery agents for boron neutron capture therapy (BNCT). The polyamines used were derivatives of the natural-occurring spermine with different lengths of the carbon chains, terminal primary amine groups and, in two of the conjugates, additional aminoethyl moieties. A tri(polyethylene glycol) conjugate was also synthesized for comparison purposes. The polyamine conjugates showed low dark cytotoxicity (IC50 >400 μM) and low phototoxicity (IC50 >40 μM at 1.5 J/cm2). All polyamine conjugates, with one exception, showed higher uptake into human glioma T98G cells (up to 12-fold) than the PEG conjugate, and localized preferentially in the cell ER, Golgi and the lysosomes. Our results show that spermine derivatives can serve as effective carriers of boronated porphyrins for the BNCT of tumors.  相似文献   

20.
Aeruginosins are a family of naturally occurring oligopeptides that share a common bicyclic amino acid core structure. Many compounds in the family are inhibitors of serine proteases, such as thrombin and trypsin. Thrombin is an important enzyme in the blood coagulation cascade, and is a promising target for anticoagulant drug development. In order to understand the structure–activity relationship (SAR) and to find selective thrombin inhibitors, we synthesized a series of aeruginosin 298-A analogs, in which the P2 bicyclic amino acid was replaced by a l-proline residue. The structure optimization was focused on modification of the P1 position. In choosing the P1 group, an effort was made to avoid using the highly basic guanidine groups present in nearly all naturally occurring aeruginosins. The synthesis and enzyme assays of these aeruginosin analogs against thrombin and trypsin are reported. We found that several compounds with neutral P1 groups exhibit excellent selectivity over trypsin and good potency against thrombin. The SAR data of the P1 groups obtained here can be used in preparing other thrombin inhibitors with better selectivity against trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号