首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
SUMMARY. 1. Single-station diel oxygen curves were used to monitor the oxygen metabolism of the Ogeechee River, a sixth-order blackwater river in the Coastal Plain of southeastern U.S.A., over a period of 4 years. Ecosystem production ( P) and respiration (R) were estimated, and P/R ratios calculated to determine the extent of autotrophy characteristic of this type of river. The potential error in oxygen metabolism caused by photo-oxidation of dissolved organic carbon (DOC) in the water was measured and found to be minor.
2. Rates of ecosystem primary production measured were intermediate compared to other rivers, ranging from 0.49 to 13.99g O2m−2 day −1.Primary production rates were highest during the summer when water levels were low. Regression analysis indicated that water depth and light absorption by DOM were significant predictors of primary production in this river. Incident light intensities were not significantly correlated with production rate.
3. Respiration rates were unusually high, varying between 3.70 and 11.5 g O2 m−2 day − 1. System respiration also varied seasonally, but less than primary production. Rates were slightly higher in spring and summer.
4. With one exception, P/R ratios were considerably lower than l throughout the study period, indicating that the Ogeechee River was highly heterotrophic. PIR ratios ranged from 0.09 to 1.3, and averaged 0.25.
5. A carbon budget calculated for this river showed floodplain inputs were 7 times autochthonous production. Organic carbon turnover length was 690 km, considerably longer than has been reported for lower-order rivers.  相似文献   

2.
A one-dimensional mathematical model of the Yenisei river ecosystem including hydrological, ecosystem and radioecological blocks has been developed. The model was used to evaluate contribution of different processes (transfer by water masses, dilution, radioactive decay, bioaccumulation) into self-purification of the river water from a radiation pollution and calculate pollution density of ecosystem components (bacteria, phyto-, zooplankton, phyto-, zoobenthos, detritus) with 137Cs and 32P.  相似文献   

3.
1. Discharge patterns of streams and rivers may be substantially affected by changes in water management, land use, or climate. Such hydrological alterations are likely to influence biotic processes, including overall ecosystem metabolism (photosynthesis and respiration). One regulator of aquatic ecosystem metabolism directly tied to hydrology is movement of bed sediments. 2. We propose that ecosystem metabolism can be reconstructed or predicted for any suite of hydrological conditions through the use of quantitative relationships between discharge, bed movement and metabolism. We tested this concept on a plains reach of the South Platte River in Colorado. 3. Movement of bed sediments was predicted from river discharge and the Shields stress, a ratio of velocity‐induced stress to sediment grain size. Quantitative relationships were established empirically between metabolic response to bed movement and recovery from bed movement, thus linking metabolism to hydrology. 4. The linkage of metabolism to hydrology allowed us to reconstruct daily photosynthesis and respiration over the 70‐year period for which discharge is known at our study site on the South Platte River. The reconstruction shows major ecological change caused by hydrological manipulation: the river has lost two‐thirds of its photosynthetic potential, and the ratio of photosynthesis to respiration is now much lower than it was prior to 1960. 5. The same approach could be used to anticipate ecological responses to proposed hydrological manipulations, to quantify benefits of hydrological restoration, or to illustrate potential effects of change in climate or land use on flowing‐water ecosystems.  相似文献   

4.
The ecological importance of the River Meuse phytoplankton with regard to carbon and nutrient transport has been examined in two reaches of the Belgian course of the river.Field measurements of total particulate organic carbon (POC), particulate organic nitrogen (PON) and particulate phosphorus (PP) show that the large autochtonous production of organic matter strongly affects the carbon and nutrient budget of the aquatic system. During the growing season, phytoplankton accounts for nearly 60% of the POC and dominates the PON. Calculations of the carbon and oxygen budget in the upper reach of the Belgian Meuse demonstrates that the ecosystem is autotrophic, i.e. that autochtonous FPOM (fine particulate organic matter) production is the major carbon input. This suggests that in large lowland rivers, primary production (P) may exceed community respiration (R), i.e. P:R>1, whereas they are assumed to be heterotrophic (P:R<1) in the River Continuum concept.The question of maintenance of phytoplankton in turbid mixed water columns is also addressed, and the case of the River Meuse is treated on the basis of studies of photosynthesis and respiration (ETS measurements). The results suggest that the potamoplankton may show some low-light acclimation, through an increase of chlorophyll a relative to biomass, when it comes to deep downstream reaches, and that algal respiration rate may be reduced. A simulation of the longitudinal development of the algal biomass shows the different phases of algal growth and decline along the river and brings support to the importation hypothesis for explaining maintenance of potamoplankton in the downstream reaches.  相似文献   

5.
6.
Soil Carbon Storage Response to Temperature: an Hypothesis   总被引:8,自引:0,他引:8  
Recently, global and some regional observations of soil carbonstocks and turnover times have implied that warming may notdeplete soil carbon as much as predicted by ecosystem models.The proposed explanation is that microbial respiration of carbonin ‘old’ mineral pools is accelerated less by warmingthan ecosystem models currently assume. Data on the sensitivityof soil respiration to temperature are currently conflicting.An alternative or additional explanation is that warming increasesthe rate of physico-chemical processes which transfer organiccarbon to ‘protected’, more stable, soil carbonpools. These processes include adsorption reactions, some ofwhich are known to have positive activation energies. Theoretically,physico-chemical reactions may be expected to respond more towarming than enzyme-mediated microbial reactions. A simple analyticalmodel and a complex multi-pool soil carbon model are presented,which separate transfers between pools due to physico-chemicalreactions from those associated with microbial respiration.In the short-term, warming depletes soil carbon. But in thelong-term, carbon losses by accelerated microbial respirationare offset by increases in carbon input to the soil (net production)and any acceleration of soil physico-chemical ‘stabilization’reactions. In the models, if net production rates are increasedin response to notional warming by a factor of 1.3, and microbialrespiration (in all pools) by 1.5, then soil carbon at equilibriumremains unchanged if physico-chemical reactions are acceleratedby a factor of about 2.2 (50% more than microbial reactions).Equilibrium soil carbon increases if physico-chemical reactionsare over 50% more sensitive to warming than soil respiration.Copyright 2001 Annals of Botany Company Soil organic matter, carbon, respiration, temperature, stabilization, decomposition, model  相似文献   

7.
1. Australian dryland rivers have among the most variable discharge of any rivers worldwide and are characterized by extended periods of no flow during which aquatic habitat contracts into isolated waterholes. Despite naturally high turbidity, benthic primary production is known to be the main source of carbon to waterhole food webs. The objective of this study was to quantify rates of benthic metabolism and identify factors influencing these rates in two Australian dryland rivers, the Cooper Creek and the Warrego River. 2. Both rivers have similar variable hydrology and high levels of turbidity (photic depths < 0.4 m), but fish abundance in Cooper Creek is 10 times than that of the Warrego River. Therefore, an additional aim of the study was to determine if fish abundances reflected underlying differences in benthic primary production. 3. Benthic gross primary production (GPP), benthic respiration, nutrient concentrations and light penetration were measured immediately after flow had ceased (‘post‐flow’) and after at least 2 months of zero flow (‘no‐flow’) in 15 waterholes from each river. A subset of four waterholes from each river was sampled on two additional occasions to determine if patterns were consistent over time. 4. Cooper Creek generally had higher rates of GPP and a more autotrophic benthic zone than the Warrego River. As a result, the expected positive relationship between fish abundance and GPP was generally observed at a broad catchment scale. 4. Light was the major control in benthic GPP in both rivers, as nutrient concentrations were high on all sampling occasions. However, for similar values of photic depth, GPP was greater in Cooper Creek than in the Warrego River. This suggests that more frequent disturbance of the littoral zone may inhibit biofilm development in waterholes of the Warrego River. 5. Although flow variability in dryland rivers is extreme compared with other rivers worldwide, cycles of expansion and contraction of aquatic habitat in these two rivers were associated with a shift in the dominance of regional scale (subcatchments contributing to river flow) versus local scale (waterhole morphology) influences on ecosystem functioning, similar to floodplain rivers in tropical and temperate regions.  相似文献   

8.
1. River restoration projects usually aim at improving the physical habitat for aquatic organisms. The extent to which biogeochemical processes and microbial activities are intensified in restored river reaches remains uncertain. 2. Here, we investigated the relationships between the distribution and composition of organic carbon (OC), bacterial secondary carbon production and extracellular enzymatic activity (EEA) in the ground water below a restored riparian section of the River Thur, Switzerland, relative to a channelised section. The spatiotemporal variability in the stable C isotopic ratio, dissolved OC polydispersity (the distribution of molecular mass in a mixture of molecules) as well as bacterial abundance, EEA and secondary production were investigated in different process zones. 3. At high river discharge, humic as well as low molecular weight amphiphilic substances infiltrated into the subsurface in a zone dominated by the pioneer plants Salix viminalis (willow bush). Concurrently, bacterial abundance, EEA and secondary carbon production increased at this location. 4. The willow plants leached bioavailable substrates into the ground water when the water table was high. The flood‐driven soil–groundwater coupling stimulated EEA and bacterial secondary production of the suspended groundwater bacterial community. 5. Establishing riparian habitat diversity adds hot spots of OC inputs during flood events, potentially providing valuable ecosystem services (e.g. degradation of organic pollutants) that accompany.  相似文献   

9.
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.  相似文献   

10.
为探明北疆伊犁河谷滴灌条件下促进夏大豆增产增效且实现农田生态系统固碳增汇的适宜耕作措施,于2017年在滴灌条件下,设置翻耕(T)、深松(ST)、翻耕覆膜(TP)与免耕(NT)4种土壤耕作措施,研究4种耕作措施对北疆夏大豆农田土壤呼吸、碳排放量、植株固碳量、经济效益及产量的影响。结果表明:不同耕作措施土壤呼吸速率峰值均出现在花期至结荚期,各处理间夏大豆土壤呼吸速率、呼吸总量、植株固碳总量和产量均以翻耕覆膜最高,深松次之,并均显著高于翻耕与免耕,免耕最低;不同耕作措施夏大豆农田生态系统碳平衡均表现为正碳平衡,在农业生产资料的各项投入中,均以灌溉用电的投入排碳量最高,占各处理的生产资料总排碳量的54.33%~65.24%,其中翻耕覆膜又因增加了地膜的投入,致使其农业生产资料排碳量和成本投入与其余3种处理呈显著性差异(P<0.05),表现为深松处理的经济效益与净碳吸收量最高,翻耕覆膜次之,使得碳的生产力、碳的经济效益、碳的生态效益均以深松最好,总体表现为ST>TP>T>NT;深松与翻耕覆膜均能够显著提升农田生态系统固碳与增产增效。综合考虑经济效益、生产投入以及地膜的回收率,深松具有最大净碳吸收量、最优经济效益与碳效益值,可以优先作为该地区农田实现增产增效以及固碳增汇的耕作措施。  相似文献   

11.
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage—a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte‐dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year‐round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock‐dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short‐ and long‐term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon‐rich permafrost ecosystems.  相似文献   

12.
Empirical data that describe the metabolic balance of stream ecosystems in human-dominated watersheds are scarce. We measured ecosystem metabolism in 23 open-canopied lowland streams draining urban and agricultural areas in the Fuji River Basin, central Japan. Gross primary production (GPP) and community respiration (CR) were estimated using the diurnal dissolved oxygen (DO) change technique, with the reaeration coefficient (K 2) determined from seven empirical depth-velocity equations. Because the predicted values of K 2 showed variation among the depth-velocity equations, the estimates of stream metabolism also varied according to the equations. However, CR was almost always greater than GPP, resulting in negative net ecosystem production (NEP) and GPP/CR ratios below unity for most of the study reaches. Highly heterotrophic streams were found in intensively farmed watersheds, suggesting that organic matter loading from agricultural lands is likely to be a source of allochthonous carbon fueling excess respiration in the study streams. In contrast, streams draining more urbanized areas were less heterotrophic. The present results suggest that lowland streams in agriculturally developed watersheds are associated strongly with terrestrial ecosystems as a source of organic carbon. The resultant strong respiration might become the dominant process in ecosystem metabolism, as reported for headwater streams, large downstream rivers, and estuaries.  相似文献   

13.
14.
1. In their natural state, river floodplains are composed of a complex mosaic of contrasting aquatic and terrestrial habitats. These habitats are expected to differ widely in their properties and corresponding ecological processes, although empirical data on their capacity to produce, store and transform organic matter and nutrients are limited. 2. The objectives of this study were (i) to quantify the spatiotemporal variation of respiration, a dominant carbon flux in ecosystems, in a complex river floodplain, (ii) to identify the environmental drivers of respiration within and among floodplain habitat types and (iii) to calculate whole‐floodplain respiration and to put these values into a global ecosystem context. 3. We measured soil and sediment respiration (sum of root and heterotrophic respiration; SR) throughout an annual cycle in two aquatic (pond and channel) and four terrestrial (gravel, large wood, vegetated island and riparian forest) floodplain habitat types in the island‐braided section of the near‐natural Tagliamento River (NE Italy). 4. Floodplain habitat types differed greatly in substratum composition (soil to coarse gravel), organic matter content (0.63 to 4.1% ash‐free dry mass) and temperature (seasonal range per habitat type: 8.6 to 33.1 °C). Average annual SR ranged from 0.54 ± 1.56 (exposed gravel) to 3.94 ± 3.72 μmol CO2 m?2 s?1 (vegetated islands) indicating distinct variation in respiration within and among habitat types. Temperature was the most important predictor of SR. However, the Q10 value ranged from 1.62 (channel habitat) to 4.57 (riparian forest), demonstrating major differences in habitat‐specific temperature sensitivity in SR. 5. Total annual SR in individual floodplain habitats ranged from 160 (ponds) to 1205 g C m?2 (vegetated islands) and spanned almost the entire range of global ecosystem respiration, from deserts to tropical forests.  相似文献   

15.
彭保发  刘宇 《生态学报》2022,42(19):7707-7716
河流景观系统孕育了人类文明,为人类社会提供类型多样的生态系统服务。其本身是一个自然景观过程和社会经济过程高度耦合的社会-生态系统,具有极高的空间异质性、时间动态和鲜明的组织尺度等级结构。当前,对河流景观系统这种特点所决定的生态系统服务供给与需求/消费互馈的机制研究不够深入,普遍缺乏从过程角度刻画生态服务供给与需求/消费互馈关系及其时空异质性和尺度特征。生态服务供给、需求和消费产生于社会-生态系统,是社会-生态耦合的纽带。阐述了河流景观生态服务供给和需求/消费的时空异质性,阐释了它们时空耦合机制和尺度特征,梳理了当前对生态服务供给、需求/消费互馈机理研究的不足。认为未来需要在社会-生态系统的框架下,从景观结构和生态过程出发,融合景观生态过程和社会过程来深入认识河流景观系统的生态服务供给与区内人类对生态服务的需求/消费之间的互馈机制。未来应重点关注:(1)河流景观结构和过程决定的生态服务供给和消费的空间分异及驱动机制;(2)河流生态服务传输的自然和人文载体及其耦合格局;(3)将生态服务需求/消费通过景观结构和生态过程对生态服务供给的反馈融入生态服务评估的方法框架,研发基于生态服务供给和需求/消费的社会-生态互馈过程模型。  相似文献   

16.
In the course of monthly sampling in 2008–2010, two regions of the littoral of the Yenisei river were compared. One of these regions (conventionally pure) was situated upstream of Krasnoyarsk, while the other (conventionally polluted) was downstream of Krasnoyarsk. The concentrations of heavy metals, oil products, phenols, biogenic elements and essential polyunsaturated fatty acids (PUFAs) in various components of the river ecosystem were determined. It was discovered that the anthropogenic pollution causes a decrease in the resources of essential PUFA in the biomass of the upper links of the food chain of the river ecosystem.  相似文献   

17.
Studies on the Upper Mississippi River, particularly over the last 15 years, have contributed to our understanding of trophic processes in large rivers. The framework established by earlier population-specific studies, however, cannot be overlooked. Examination of the feeding habits of fish ranging from planktivores to piscivores gave the first indication that trophic processes were influenced by the spatial complexity and annual hydrological patterns of river-floodplain ecosystems. Experimental studies, which have often been considered impossible or impractical in large rivers, demonstrated the potential for biotic controls of system dynamics through predator–prey and competitive interactions. Such studies have been particularly helpful in understanding the potential impact of non-native species, including zebra mussels and Asian carp, to biodiversity and secondary production. Our understanding of riverine ecosystem function expanded greatly as food web studies began the application of a new tool—natural stable isotopes. Studies employing stable isotopes illustrated how food webs in a number of large rivers throughout the world are supported by the autochthonous production of microalgae. This study, coupled with other studies testing the prevailing models of riverine ecosystem function, has brought us to a point of better understanding the nature of river ecosystem functions. It is through looking back at the earlier studies of fish diet that we should realize that the temporal and spatial complexities of river ecosystem function must still be addressed more fully. This and a better grasp of the significance of the arrangement of patches within the riverine landscape will prove beneficial, as we assess the appropriate scale of river rehabilitation with an eye on how rehabilitation promotes productivity within complex ecosystems, including the Upper Mississippi River.  相似文献   

18.
The flux of carbon and nutrients through aquatic systems is largely dependent upon interactions between autotrophic and heterotrophic processes. As a means of assessing the relative importance of autotrophy and heterotrophy in large rivers, we compared phytoplankton production, heterotrophic bacterial production and community respiration in three regulated rivers of the Midwestern USA. Samples were collected monthly (March to December 1999) from impoundments of the Ohio (McAlpine Pool), Cumberland (Lake Barkley), and Tennessee (Kentucky Lake) Rivers. Bacterial production was tightly coupled to phytoplankton production at each site (r 2 = 0.63–0.85). Ratios of phytoplankton production to bacterial production ranged from <1 to 15 in the Tennessee and Cumberland Rivers and 2 to 90 in the Ohio River. The ratio of primary production to community respiration (P:R) ranged from 0.03 to 2.76 across all sites, with average P:R values lower in the Ohio River (0.14) than the Tennessee River (0.39) and the Cumberland River (1.10). P:R values above unity (P > R) were observed only in the Tennessee and Cumberland Rivers during seasonal (April–July) spikes in primary production. We estimate that 3, 6, and 20% of annual bacterial carbon requirements were met by exudates from in situ phytoplankton in the Ohio River, Tennessee River, and Cumberland River, respectively. Our findings indicate that heterotrophic bacteria were largely dependant upon allochthonous carbon. Autochthonous sources provided supplemental organic matter (up to 40% of bacterial carbon demand) during summer low flow. Handling editor: J. Padisak  相似文献   

19.
1. High light availability and stable base flow during the dry season promote primary production in perennial rivers of the wet–dry tropics, in contrast to production during the wet season which is often limited by turbidity and scouring. The Mitchell River of northern Queensland (Australia) was studied to understand controls on aquatic production and respiration in the dry season in relation to spatial and temporal gradients of light and temperature. 2. At three sites along the river, whole‐ecosystem gross primary production (GPP) and respiration (ER) were measured from diel changes of dissolved oxygen using the open‐channel single station method. Using stable carbon and nitrogen isotope analysis, aquatic consumers and their potential basal food resources were also assessed to determine food web relationships at the beginning and end of the dry season. 3. Nutrient limitation of aquatic net primary production was implied from the oligotrophic conditions and high algal C:N ratios. Rates of GPP were comparable with other tropical and temperate rivers and were regulated by light availability. 4. Respiration rates were high and similar to other tropical and subtropical rivers. Up to 52% of temporal variation of ER was explained by temperature, while P/R was lowest at the downstream site. 5. Benthic algae were the major carbon source for primary and secondary benthic consumers (insects) in the dry season but not for higher consumers (fish and crustaceans). Despite high rates of ER, which were probably supported by decaying terrestrial C3 plant material, this carbon source was not identified as contributing to animal consumer biomass. 6. While benthic algal production in the dry season sustained benthic invertebrates, the importance of external subsidies of carbon along the river, probably from the floodplain, was emphasised for fish and large invertebrates, which evidently were feeding on carbon sources not present in channel waterholes during the dry season.  相似文献   

20.
Ecosystem metabolism, that is, gross primary productivity (GPP) and ecosystem respiration (ER), controls organic carbon (OC) cycling in stream and river networks and is expected to vary predictably with network position. However, estimates of metabolism in small streams outnumber those from rivers such that there are limited empirical data comparing metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14–84 m3 s?1) in the Western and Midwestern United States (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6–22 g O2 m?2 d?1 and ER tracked GPP, suggesting that autotrophic production supports much of riverine ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas exchange estimates from these 14 rivers in agreement with empirical models. Carbon turnover lengths (that is, the distance traveled before OC is mineralized to CO2) ranged from 38 to 1190 km, with the longest turnover lengths in high-sediment, arid-land rivers. We also compared estimated turnover lengths with the relative length of the river segment between major tributaries or lakes; the mean ratio of carbon turnover length to river length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d?1, and were not different than measurements from small streams. Given high GPP relative to ER, combined with generally short OC spiraling lengths, rivers can be highly reactive with regard to OC cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号