首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A Bauhinia variegata trypsin inhibitor (BvTI) cDNA fragment was cloned into the pCANTAB5E phagemid. The clone pAS 1.1.3 presented a cDNA fragment of 733 bp, including the coding region for a mature BvTI protein comprising 175 amino acid residues. The deduced amino acid sequence for BvTI confirmed it as a member of the Kunitz-type plant serine proteinase inhibitor family. The BvTI cDNA fragment encoding the mature form was cloned into the expression vector, pET-14b, and ex-pressed in E. coli BL21 (DE3) pLysS in an active form. In addition, a BvTI mutant form, r(mut)BvTI, with a Pro residue as the fifth amino acid in place of Leu, was produced. The recombinant proteins, rBvTI and r(mut)BvTI, were purified on a trypsin-Sepharose column, yielding 29 and 1.44 mg/l of active protein, respectively, and showed protein bands of approximately 21.5 kDa by SDS-PAGE. Trypsin inhibition activity was comparable for rBvTI (Ki=4 nM) and r(mut)BvTI (Ki=6 nM). Our data suggest that the Leu to Pro substitution at the fifth amino-terminal residue was not crucial for proteinase inhibition.  相似文献   

2.
A cDNA encoding the proform of Bombyx cysteine proteinase (BCP) was expressed at a high level in Escherichia coli using the T7 polymerase expression system. The insoluble recombinant zymogen was solubilized and renatured by modifying a method applied to human pro-cathepsin L. Like the natural BCP precursor, the recombinant proenzyme was spontaneously converted to an active proteinase at pH 3.75. A deletion in the central region of the propeptide resulted in much loss of the activity, suggesting that the propeptide is essential for proper folding during renaturation. In contrast, the renatured mature form of recombinant BCP was not active but regained activity by including the propeptide in the renaturing buffer, suggesting that the propeptide, acting as an intramolecular chaperone, promotes refolding of the associated proteinase domain into an active conformation. The mature form of natural BCP rapidly lost its activity at neutral pH, whereas its proform was stable. The mature enzyme retained some activity in the presence of the propeptide. Arch.  相似文献   

3.
Digestive proteinases were isolated and partially purified from the pyloric ceca of trout and salmon. Their stability and some catalytic properties were compared with those of a three-enzyme system that is used for determination of in vitro protein digestibility. In contrast to the three-enzyme system, pyloric ceca trypsin and total proteinase activity were least stable at pH values below 5.0 and most stable under alkaline conditions up to pH 10.0. Thermal inactivation (50%) occurred in 60 min at 55°C for trypsin activity of trout and salmon ceca proteinases and at 40°C for the three-enzyme system at the pH (8.0) of the in vitro assay. Thermal inactivation (50%) of total proteinase activity occurred in 60 min at about 55, 50 and 35°C for chinook, trout and three-enzyme preparations, respectively. SDS-PAGE zymograms of the ceca enzymes showed the presence of several proteolytic activity bands. Two of the bands corresponded in molecular weight to trypsin and chymotrypsin. Ceca proteinases differ from the three-enzyme system in their response to inhibitors; in particular, the ceca proteinases are much more sensitive to soybean trypsin inhibitor than the procine trypsin used in the three-enzyme system when assayed for trypsin, but less sensitive when assayed for total proteinase. The distinctive properties of ceca enzymes help explain why they are more appropriate than the three-enzyme system, and other enzyme cocktails for in vitro protein digestibility assay of saunonid feed components.  相似文献   

4.
Trypsin-like enzymes from the salivary gland complex (SGC) of Lygus hesperus Knight were partially purified by preparative isoelectric focusing (IEF). Enzyme active against Nalpha-benzoyl-L-arginine-p-nitroanilide (BApNA) focused at approximately pH 10 during IEF. This alkaline fraction gave a single activity band when analyzed with casein zymograms. The serine proteinase inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor, completely inhibited or suppressed the caseinolytic activity in the crude salivary gland extract as well as the IEF-purified sample. Chicken egg white trypsin inhibitor also inhibited the IEF-purified sample but was not effective against a major caseinolytic band in the crude salivary gland extract. These data indicated the presence of serine proteinases in the SGC of L. hesperus. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for serine proteinases in L. hesperus. The encoded trypsin-like protein included amino acid sequence motifs, which are conserved with five homologous serine proteinases from other insects. Typical features of the putative trypsin-like protein from L. hesperus included residues in the serine proteinase active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides.  相似文献   

5.
A recently recognized non-proacrosin zymogen referred to as sperminogen has been purified from human spermatozoa, and several of its properties have been determined. The purification procedure included acid extraction of washed ejaculated sperm at pH 3.0, followed by gel filtration of the solubilized extract over a Sephadex G-75 superfine column. The sperminogen eluted from the column in a single band that was completely separated from the proacrosin band. This separation was confirmed by a gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (gelatin-SDS-PAGE) zymograph. This zymograph also demonstrated that the final sperminogen preparation contained four forms of zymogen, with molecular weights between 32,000 and 36,000. At neutral pH, the sperminogen was converted into spermin, its enzymatically active form, yielding a sigmoidal curve typical of zymogen autoactivation. The effects of several factors on the rate of this autoconversion indicate specific differences between sperminogen and proacrosin. Spermin hydrolyzed N-alpha-benzoyl-L-arginine ethyl ester (BzArgOEt), and was inhibited by lima bean trypsin inhibitor, pancreatic trypsin inhibitor, N-acetyl-L-leucyl-L-leucyl-L-argininal (leupeptin), and tosyl-L-lysine chloromethyl ketone, indicating that the enzyme has a trypsin-like specificity and probably belongs to the class of trypsin-like enzymes. Since acrosin is generally believed to be the only trypsin-like enzyme in mammalian sperm, the demonstration of human sperminogen and spermin necessitates further inquiry into the functions and the relationships between sperm proteinase systems.  相似文献   

6.
The PKPIJ-B gene encoding a chymotrypsin inhibitor from a subfamily of potato Kunitz-type proteinase inhibitors (PKPI) in potatoes (Solanum tuberosum L. cv. Yubilei Zhukova) was cloned into a pET23a vector and then expressed in Escherichia coli. The recombinant PKPIJ-B protein obtained in the inclusion bodies was denatured, purified by high-performance liquid chromatography (HPLC) on Mono Q under denaturing conditions, and renaturated. The renaturated protein was additionally purified using HPLC on DEAE-ToyoPearl. The PKPIJ-B protein efficiently suppressed chymotrypsin activity, had a weaker effect on trypsin, and inhibited the growth and development of phytopathogenic microorganisms affecting potato plants.  相似文献   

7.
Based on substrate specificity, an alkaline pH optimum, sensitivity to selected proteinase inhibitors, and molecular analysis, we provide evidence for the presence of a trypsin-like serine proteinase in the salivary gland complex (SGC) of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae). The predominant activity in extracts of the SGC against N(2)-benzoyl-L-arginine-p-nitroanilide (L-BApNA) was at pH 10, but a minor peak of activity also occurred at pH 5. The major BApNAase activity focused at 10.4 during preparative isoelectric focusing and was eluted with an apparent molecular weight of 23,000 from a calibrated gel filtration column. The BApNAase fraction gave a single major band when analyzed on a casein zymogram. The activity was completely suppressed by the serine protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor. A cDNA coding for a trypsin-like protein in the salivary glands of L. lineolaris was cloned and sequenced. The 971bp cDNA contained an 873-nucleotide open reading frame encoding a 291-amino acid trypsin precursor. The encoded protein included amino acid sequence motifs that are conserved with four homologous serine proteases from other insects. Typical features of the putative trypsin-like protein from L. lineolaris included the serine protease active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, the residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for trypsin like enzymes in the salivary glands of L. lineolaris.  相似文献   

8.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

9.
1. A latent neutral proteinase was found in culture media of mouse bone explants. Its accumulation during the cultures is closely parallel to that of procollagenase; both require the presence of heparin in the media. 2. Latent neutral proteinase was activated by several treatments of the media known to activate procollagenase, such as limited proteolysis by trypsin, chymotrypsin, plasmin or kallikrein, dialysis against 3 M-NaSCN at 4 degrees C and prolonged preincubation at 25 degrees C. Its activation often followed that of the procollagenase present in the same media. 3. Activation of neutral proteinase (as does that of procollagenase) by trypsin or plasmin involved two successive steps: the activation of a latent endogenous activator present in the media followed by the activation of neutral proteinase itself by that activator. 4. The proteinase degrades cartilage proteoglycans, denatured collagen (Azocoll) and casein at neutral pH; it is inhibited by EDTA, cysteine or serum. Collagenase is not inhibited by casein or Azocoll and is less resistant to heat or to trypsin than is the proteinase. Partial separation of the two enzymes was achieved by gel filtration of the media but not by fractional (NH4)2SO4 precipitation, by ion exchange or by affinity chromatography on Sepharose-collagen. These fractionations did not activate latent enzymes. 5. Trypsin activation decreases the molecular weight of both latent enzymes (60 000-70 000) by 20 000-30 000, as determined by gel filtration of media after removal of heparin. 6. The latency of both enzymes could be due either to a zymogen or to an enzyme-inhibitor complex. A thermostable inhibitor of both enzymes was found in some media. However, combinations of either enzyme with that inhibitor were not reactivated by trypsin, indicating that this inhibitor is unlikely to be the cause of the latency.  相似文献   

10.
IgE-mediated sensitization to wheat flour belongs to the most frequent causes of occupational asthma. A cDNA library from wheat seeds was constructed and screened with serum IgE from baker's asthma patients. One IgE-reactive phage clone contained a full-length cDNA coding for an allergen with a molecular mass of 9.9 kDa and an isoelectric point of 6. According to sequence analysis it represents a member of the potato inhibitor I family, a group of serine proteinase inhibitors, and thus is the first allergen belonging to the group 6 pathogenesis-related proteins. The recombinant wheat seed proteinase inhibitor was expressed in Escherichia coli and purified to homogeneity. According to circular dichroism analysis, it represented a soluble and folded protein with high thermal stability containing mainly beta-sheets, random coils, and an alpha-helical element. The recombinant allergen showed allergenic activity in basophil histamine release assays and reacted specifically with IgE from 3 of 22 baker's asthma patients, but not with IgE from grass pollen allergic patients or patients suffering from food allergy to wheat. Allergen-specific Abs were raised to localize the allergen by immunogold electron microscopy in the starchy endosperm and the aleuron layer. The allergen is mainly expressed in mature wheat seeds and, despite an approximately 50% sequence identity, showed no relevant cross-reactivity with allergens from other plant-derived food sources such as maize, rice, beans, or potatoes. Recombinant wheat serine proteinase inhibitor, when used in combination with other specific allergens, may be useful for the diagnosis and therapy of IgE-mediated baker's asthma.  相似文献   

11.
Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea -l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. -l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera.  相似文献   

12.
The complete amino acid sequence of the proteinase inhibitor III from bovine spleen is reported. It consists of 62 amino acid residues and is identical to that of spleen inhibitor II (an isoinhibitor of the bovine pancreatic trypsin inhibitor, which shares with the latter 89% of sequence identity), except for four extra residues at the C-terminal side. Inhibitor III appears to be an intermediate in the processing of the putative 100-residue primary expression product, which leads to the mature inhibitor II. These results and those previously obtained for another intermediate, isoinhibitor I, are indicative of the following order for the last steps of the precursor processing inhibitor I----inhibitor III----inhibitor II. The mature protein and the two intermediates isolated have a very similar antiproteolytic activity. However, their in vivo target enzyme(s) are not yet known, as also the target enzyme of the bovine pancreatic trypsin inhibitor is not known. Thus, the available data would indicate that either the three isoinhibitors have a distinct functional role, by inhibiting different target enzymes, or inhibitors I and III are obligatory intermediates for directing the final targeting of the mature, functionally relevant inhibitor II.  相似文献   

13.
In the present study, we have generated a mutant strain of Streptococcus pyogenes, MC25, which lacks M protein on its surface, and we demonstrate that this strain is unable to generate a mature 28 kDa cysteine proteinase. Furthermore, we show that S. pyogenes bacteria of M1 serotype are dependent on cell wall-anchored M protein to cleave the secreted zymogen into a mature cysteine proteinase. We also show that MC25 secretes a 40 kDa zymogen, having a conformation different from that secreted by wild-type bacteria. We provide data showing that the cleavage site is not blocked but, presumably, the active site is. This suggests that M protein, when anchored to the cell wall, is involved in the unfolding of the zymogen and generation of a mature cysteine proteinase that can be activated under reducing conditions. Our data add new aspects to the interaction between two important virulence factors of S. pyogenes, the streptococcal cysteine proteinase and M protein.  相似文献   

14.
The Mucor rennin gene encoding a prepro-form of the fungal aspartic proteinase from Mucor pusillus was expressed under the control of the yeast GAL7 promoter in Saccharomyces cerevisiae. An inactive zymogen of the enzyme with the 44-amino-acid pro-sequence was identified in the medium during the initial stage of cultivation. Processing of the purified zymogen to the mature enzyme proceeded autocatalytically under the acidic conditions. The rate of processing was accelerated by an increase in the concentration of the zymogen or addition of the mature enzyme. The in vitro processing was inhibited by inhibitors for the aspartic proteinases. The zymogen with no proteinase activity due to a mutation at the active site residue, Asp, was still processed at a relatively slower rate in a wild-type strain of yeast, but no processing occurred in the pep4-3 mutant strain of S. cerevisiae deficient in yeast proteinase A. Thus, Mucor rennin is excreted in a form of zymogen, which is then processed in the yeast secretion pathway mainly by the autocatalytic proteolysis but, alternatively, by a proteinase of yeast.  相似文献   

15.
The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl2. It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4°C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.  相似文献   

16.
1. Serum proteinase precursor was found in plasma protein fractions I and III of Cohn. Inhibitors of serum proteinase, leucoproteinase, trypsin, and papain were found in fractions IV-1 and IV-4, and to a lesser extent in fractions V and I. 2. Pancreatic, soy bean, lima bean, and egg white inhibitors inhibited trypsin stoichiometrically. Pancreatic inhibitor had comparable inhibitory activity against serum proteinase; soy bean inhibitor had somewhat less, lima bean inhibitor even less, and egg white inhibitor very little. None of these inhibitors appreciably inhibited leucoproteinase or papain. 3. Serum and fractions IV - 1 and IV - 4 had marked inhibitory activity against trypsin and leucoproteinase, and somewhat less against serum proteinase and papain. The inhibitory activity of the plasma proteins against trypsin and leucoproteinase was due almost entirely to fractions IV - 1 and IV - 4; against serum proteinase and papain fraction V was slightly more important. The "reconstituted plasma proteins" accounted for 8 to 25 per cent of the proteinase-inhibitory activity of whole serum or plasma. 4. The proteinase-inhibitory activity of serum, plasma protein fractions, and soy bean inhibitor was heat labile, while that of pancreatic, lima bean, and egg white inhibitors was relatively heat stable. 5. Reducing and oxidizing agents, in very high concentration, inhibited serum proteinase, as well as trypsin and leucoproteinase. These proteinases were not influenced by mercurial sulfhydryl inhibitors, indicating that free sulfhydryl groups do not play an important part in their activity.  相似文献   

17.
The sequence of a trypsin inhibitor, isolated from wheat endosperm, is reported. The primary structure was obtained by automatic sequence analysis of the S-alkylated protein and of purified peptides derived from chemical cleavage by cyanogen bromide and digestion withStaphylococcus aureus V8 protease. This protein, named wheat trypsin inhibitor (WTI), which is comprised of a total of 71 amino acid residues, has 12 cysteines, all involved in disulfide bridges. The primary site of interaction (reactive site) with bovine trypsin has been identified as the dipeptide arginyl-methionyl at positions 19 and 20. WTI has a high degree of sequence identity with a number of serine proteinase inhibitors isolated from both cereal and leguminous plants. On the basis of the findings presented, this protein has been classified as a single-headed trypsin inhibitor of Bowman-Birk type.  相似文献   

18.
Pathological activation of digestive zymogens within the pancreatic acinar cell initiates acute pancreatitis. Cytosolic events regulate this activation within intracellular compartments of unclear identity. In an in vivo model of acute pancreatitis, zymogen activation was detected in both zymogen granule-enriched and microsomal cellular fractions. To examine the mechanism of this activation in vitro, a reconstituted system was developed using pancreatic cytosol, a zymogen granule-enriched fraction, and a microsomal fraction. Addition of cytosol to either particulate fraction resulted in a prominent increase in both trypsin and chymotrypsin activities. The percentage of the pool of trypsinogen and chymotrypsinogen activated was about twofold and sixfold greater, respectively, in the microsomal than in the zymogen granule-enriched fraction. Activation of chymotrypsinogen but not trypsinogen was significantly enhanced by ATP (5 mM) but not by the inactive ATP analog AMP-PNP. The processing of procarboxypeptidase B to its mature form also demonstrated a requirement for ATP and cytosol. E64d, an inhibitor of cathepsin B, a thiol protease that can activate trypsin, completely inhibited trypsin activity but did not affect chymotrypsin activity or carboxypeptidase B generation. These studies demonstrate that both zymogen granule-enriched and microsomal fractions from the pancreas can support cytosol-dependent zymogen activation. A component of the activation of some zymogens, such as chymotrypsinogen and procarboxypeptidase, may depend on ATP but not on trypsin or cathepsin B.  相似文献   

19.
Candida antarctica lipase B (CALB) is one of the most widely used and studied enzymes in the world. In order to achieve the high-level expression of CALB in Pichia, we optimized the codons of CALB gene and α-factor by using a de novo design and synthesis strategy. Through comparative analysis of a series of recombinants with different expression components, we found that the methanol-inducible expression recombinant carrying the codon-optimized α-factor and mature CALB gene (pPIC9KαM-CalBM) has the highest lipase production capacity. After fermentation parameters optimization, the lipase activity and protein content of the recombinant pPIC9KαM-CalBM reached 6,100 U/mL and 3.0 g/L, respectively, in a 5-L fermentor. We believe this strategy could be of special interest due to its capacity to improve the expression level of target gene, and the Pichia transformants carrying the codon-optimized gene had great potential for the industrial-scale production of CALB lipase.  相似文献   

20.
Bromein, a cysteine proteinase inhibitor from pineapple stem, is a unique double-chain inhibitor. The 27.5-kDa precursor protein is processed by the removal of three interchain, two interdomain, and two terminal-flanking peptides, thus resulting in the release of mature isoinhibitors of approximately 6 kDa. To characterize the processing of the interchain peptide Thr15-Ser-Ser-Ser-Asp, we expressed a single-chain precursor with this peptide and monitored proteolytic cleavage by the target proteinase bromelain. By peptide sequencing and mass spectrometric analysis, the initial cleavage was found to occur in vitro between the light-chain and interchain peptides; subsequent trimming formed the terminal-ragged peptides Thr15-Lys60, Ser17-Lys60, Ser18-Lys60, and Asp19-Lys60. However, bromelain did not show any cleavage activity between the interchain and heavy-chain peptides. We also discovered that cleavage between the light-chain and interchain peptides is essential for the single-chain inhibitor to exhibit full inhibitory activity. Notably, the incompletely processed intermediates showed higher inhibitory activity than either the native bromein or the single-chain precursor. Bromein is also known to weakly inhibit the serine proteinases chymotrypsin and trypsin; however, a recombinant single-chain inhibitor with the interchain peptide was no longer able to inhibit these serine proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号