首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Campesan S  Dubrova Y  Hall JC  Kyriacou CP 《Genetics》2001,158(4):1535-1543
The molecular basis of species-specific differences in courtship behavior, a critical factor in preserving species boundaries, is poorly understood. Genetic analysis of all but the most closely related species is usually impossible, given the inviability of hybrids. We have therefore applied interspecific transformation of a single candidate behavioral locus, no-on-transient A (nonA), between Drosophila virilis and D. melanogaster, to investigate whether nonA, like the period gene, might encode species-specific behavioral information. Mutations in nonA can disrupt both visual behavior and the courtship song in D. melanogaster. The lovesong of nonA(diss) mutant males superficially resembles that of D. virilis, a species that diverged from D. melanogaster 40-60 mya. Transformation of the cloned D. virilis nonA gene into D. melanogaster hosts carrying a synthetic deletion of the nonA locus restored normal visual function (the phenotype most sensitive to nonA mutation). However, the courtship song of transformant males showed several features characteristic of the corresponding D. virilis signal, indicating that nonA can act as a reservoir for species-specific information. This candidate gene approach, together with interspecific transformation, can therefore provide a direct avenue to explore potential speciation genes in genetically and molecularly tractable organisms such as Drosophila.  相似文献   

2.
3.
The Ty3/gypsy family of retroelements is closely related to retroviruses, and some of their members have an open reading frame resembling the retroviral gene env. Sequences homologous to the gypsy element from Drosophila melanogaster are widely distributed among Drosophila species. In this work, we report a phylogenetic study based mainly on the analysis of the 5' region of the env gene from several species of the obscura group, and also from sequences already reported of D. melanogaster, Drosophila virilis, and Drosophila hydei. Our results indicate that the gypsy elements from species of the obscura group constitute a monophyletic group which has strongly diverged from the prototypic D. melanogaster gypsy element. Phylogenetic relationships between gypsy sequences from the obscura group are consistent with those of their hosts, indicating vertical transmission. However, D. hydei and D. virilis gypsy sequences are closely related to those of the affinis subgroup, which could be indicative of horizontal transmission.  相似文献   

4.
5.
We have isolated clones corresponding to the autosomal chorion locus of Drosophila melanogaster, from two distantly (D. virilis and D. grimshawi) and one closely (D. subobscura) related species. In all the species the locus is unique within the genome and encompasses the same four chorion genes and an adjacent nonchorion gene, in the same order. In all species the locus specifically amplifies in the ovary, as in D. melanogaster. We present the nucleotide sequences of DNA segments that total 8.3 kb in length and include gene s15-1 from D. subobscura, D. virilis, and D. grimshawi as well as gene s19-1 from D. subobscura and D. grimshawi. They show clearly nonuniform rates of divergence, both within and outside the limits of the genes. Highlighted by a background of extensive sequence divergence elsewhere in the extragenic region, highly conserved elements are observed in the 5' flanking DNA and might represent regulatory elements.  相似文献   

6.
S J Bray  J Hirsh 《The EMBO journal》1986,5(9):2305-2311
The dopa decarboxylase gene (Ddc) has been isolated from Drosophila virilis and introduced into the germ-line of Drosophila melanogaster by P-element mediated transformation. The integrated gene is induced at the correct stages during development with apparently normal tissue specificity, indicating that cis-acting elements required for regulation are functionally conserved between the two species. A comparison of the DNA sequences from the 5' flanking regions reveals a cluster of small (8-16 bp) conserved sequence elements within 150 bp upstream of the RNA startpoint, a region required for normal expression of the D. melanogaster Ddc gene.  相似文献   

7.
8.
9.
10.
We have used low stringency screening with the Drosophila melanogaster s36 chorion gene to recover its homologue from genomic and cDNA libraries of the medfly, Ceratitis capitata. The same gene has also been recovered from a genomic library of D. virilis. The medfly s36 gene shows similar developmental specificity as in Drosophila (early choriogenesis). It is also specifically amplified in ovarian follicles; this is the first report of chorion gene amplification outside the genus Drosophila. Alignments of s36 sequences from three species show that, in addition to its regulatory conservation, the s36 gene is extensively conserved in sequence, in a region corresponding to a central protein domain, and in short regions of 5' flanking DNA that might correspond to cis-regulatory elements.  相似文献   

11.
D. J. Begun  C. F. Aquadro 《Genetics》1991,129(4):1147-1158
We have estimated DNA sequence variation and differentiation within and between Drosophila melanogaster and its sibling species, Drosophila simulans, using six-cutter restriction site variation at yellow-achaete (y-ac), phosphogluconate dehydrogenase (Pgd), and period (per). These three gene regions are of varying distance from the telomere of the X chromosome and range from very low to moderate rates of recombination in D. melanogaster. According to Tajima's test of neutrality, the Pgd region has been influenced by balancing selection in D. melanogaster. This is consistent with previous data suggesting the allozyme polymorphism at this locus is visible to selection. The Hudson, Kreitman, Aguadé test of neutrality reveals a significant departure from neutrality for the y-ac region compared to the per or rosy regions in D. simulans. There is also a significant departure for the y-ac region compared to the Adh 5' flanking region in D. melanogaster. In both species the departure appears to be due to reduced variation at y-ac compared to that expected from divergence between D. simulans and D. melanogaster. We conclude that recent hitchhiking associated with the selective fixation of one or more advantageous mutants in the y-ac region is the best explanation for reduced variation at y-ac.  相似文献   

12.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   

13.
The nonA gene of Drosophila melanogaster is important for normal vision, courtship song, and viability and lies approximately 350 bp downstream of the dGpi1 gene. Full rescue of nonA mutant phenotypes can be achieved by transformation with a genomic clone that carries approximately 2 kb of 5' regulatory material and that encodes most of the coding sequence of dGpi1. We have analyzed this 5' region by making a series of deleted fragments, fusing them to yeast GAL4 sequences, and driving UAS-nonA expression in a mutant nonA background. Regions that both silence and enhance developmental tissue-specific expression of nonA and that are necessary for generating optomotor visual responses are identified. Some of these overlap the dGpi1 sequences, revealing cis-regulation by neighboring gene sequences. The largest 5' fragment was unable to rescue the normal electroretinogram (ERG) consistently, and no rescue at all was observed for the courtship song phenotype. We suggest that sequences within the nonA introns that were missing in the UAS-nonA cDNA may carry enhancer elements for these two phenotypes. Finally, we speculate on the striking observation that some of the cis-regulatory regions of nonA appear to be embedded within the coding regions of dGpi1.  相似文献   

14.
15.
16.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

17.
Excess Polymorphism at the Adh Locus in DROSOPHILA MELANOGASTER   总被引:12,自引:9,他引:3       下载免费PDF全文
The evolutionary history of a region of DNA encompassing the Adh locus is studied by comparing patterns of variation in Drosophila melanogaster and its sibling species, D. simulans. An unexpectedly high level of silent polymorphism in the Adh coding region relative to the 5' and 3' flanking regions in D. melanogaster is revealed by a populational survey of restriction polymorphism using a four-cutter filter hybridization technique as well as by direct sequence comparisons. In both of these studies, a region of the Adh gene encompassing the three coding exons exhibits a frequency of polymorphism equal to that of a 4-kb 5' flanking region. In contrast, an interspecific sequence comparison shows a two-fold higher level of divergence in the 5' flanking sequence compared to the structural locus. Analysis of the patterns of variation suggest an excess of polymorphism within the D. melanogaster Adh locus, rather than lack of polymorphism in the 5' flanking region. An approach is outlined for testing neutral theory predictions about patterns of variation within and between species. This approach indicates that the observed patterns of variation are incompatible with an infinite site neutral model.  相似文献   

18.
Conservation of Brown Gene Trans-Inactivation in Drosophila   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

19.
20.
Mitochondrial DNA (mtDNA) molecules from species of the genus Drosophila contain a region exceptionally rich in adenine + thymine (A+T). Using agarose gel electrophoresis and electron microscopy, we determined that in the mtDNA molecules of D. melanogaster, D. simulans, D. mauritiana, D. yakuba, D. takahashii, and D. virilis, the A+T-rich regions, which are 5.1, 4.8, 4.6, 1.1, 2.2, and 1.0 kilobase pairs in size, respectively, are at homologous locations relative to various common EcoRI and HindIII cleavage sites. Under conditions highly permissive for base pairing (35% formamide), heteroduplexes were constructed between EcoRI fragments and whole circular molecules of mtDNAs of the above mentioned six species in a variety of combinations. Complete pairing of molecules outside the A+T-rich region was found in all heteroduplexes examined. However, in contrast, A+T-rich regions of the different species failed to pair in all but those combinations of mtDNAs involving the three most closely related species. In heteroduplexes between D. melanogaster and D. simulans, and between D. melanogaster and D. mauritiana mtDNAs, up to 35% of the A+T-rich regions appeared double-stranded. These data indicate that much more extensive divergence of sequences has occurred in A+T-rich regions than in other regions of Drosophila mtDNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号