共查询到20条相似文献,搜索用时 15 毫秒
1.
A Nicholson V Brade H U Schorlemmer R Burger D Bitter-Suermann U Hadding 《Journal of immunology (Baltimore, Md. : 1950)》1975,115(4):1108-1113
The interaction of ZXd2, an insoluble intermediate of the alternative pathway on zymosan (Z5), with factor B and the enzyme D proceeds in a two-step reaction: 1) B binds in the presence of Mg++ to ZXd2 to form the intermediate ZXd2B, 2) B bound to ZXd2 is subsequently activated enzymatically by D to yield the complex ZXd2B which cleaves C3. Evidence was obtained that C3b, which is present on ZXd2, is required for ZXd2B formation. Studies of the functional role of C3b for ZXd2B formation revealed that C3b is involved in the first reaction step i.e., binding of B to ZXd2 to yield ZXd2B. Formation of ZXd2B is inhibited by pretreatment of ZXd2 with either anti-C3 Fab or with C3b-INA. Low ionic strength of about 2 mS was found to favor the interaction of the C3b with B. Mg++ concentrations from 1 to 31 mM as well as variation of pH in the range from 6.2 to 8.5 did not greatly influence the reaction of B with ZXd2. For the enzymatic activation of B only C3b on ZXd2 and factor D are required. This is concluded from the finding that fluid phase C3b is sufficient for the activation of B in the presence of D. This does not exclude the fact that other proteins present on ZXd2 may help to stabilize the intermediate ZXd2B or the enzymatically active complex AXd2B, or both of them. 相似文献
2.
J Gagnon 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1984,306(1129):301-309
The activation of complement is initiated by two independent pathways. Each leads to the formation of a complex protease, C3 convertase, with equivalent specificity and function but different composition. The convertase derived from the classical pathway is composed of complement components C4 and C2 while that from the alternative pathway consists of components C3 and Factor B. C2 and Factor B contain the catalytic site of each convertase respectively. The amino acid sequence of Factor B has been determined. Limited sequence of CNBr-peptides isolated from C2 has also been obtained. The two enzymes are shown to be homologous and to represent a novel type of serine proteinase, characterized by their unusual structure and mechanism of activation, when compared to known serine proteinases. 相似文献
3.
Harris CL Pettigrew DM Lea SM Morgan BP 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(1):352-359
Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF. 相似文献
4.
The C-terminal fragment, Bb, of factor B combines with C3b to form the pivotal C3-convertase, C3bBb, of alternative complement pathway. Bb consists of a von Willebrand factor type A (vWFA) domain that is structurally similar to the I domains of integrins and a serine protease (SP) domain that is in inactive conformation. The structure of the C3bBb complex would be important in deciphering the activation mechanism of the SP domain. However, C3bBb is labile and not amenable to X-ray diffraction studies. We engineered a disulfide bond in the vWFA domain of Bb homologous to that shown to lock I domains in active conformation. The crystal structures of Bb(C428-C435) and its inhibitor complexes reveal that the adoption of the "active" conformation by the vWFA domain is not sufficient to activate the C3-convertase catalytic apparatus and also provide insights into the possible mode of C3-convertase activation. 相似文献
5.
The fluid phase C3 convertase of the alternative pathway of human complement activation has been constructed from the isolated C3 component and from purified factors B and D. The enzyme was able to activate the isolated components C4 and C2 in the presence of C4 but had no effect on C2 in the absence of C4. The C4 and C2 activation was monitored by the loss of their hemolytic activity during the incubation with the alternative fluid phase C3 convertase. The activation of C4 and C2 components by the membrane-bound alternative C3 convertase formed on red cells (EC3bBb) was followed by the formation of C3 convertase of the classic pathway--EC4b2a. This resulted in the enhancement of hemolysis. 相似文献
6.
P H Lesavre T E Hugli A F Esser H J Müller-Eberhard 《Journal of immunology (Baltimore, Md. : 1950)》1979,123(2):529-534
The structural basis of activation of the alternative pathway C3 convertase was explored. For this purpose a modified isolation procedure of the activating enzyme, Factor D, was elaborated. The procedure affords a 70,000-fold purification of the enzyme with a 20% yield. A simple assay was designed for the quantitation of both Factor D and Factor B activity. On the basis of activity measurements and amino acid analysis, Factor D concentration in plasma was estimated to be 1 microgram/ml. Highly purified Factor D was used to activate Factor B in the presence of C3b and Mg++. The resulting fragments, Ba and Bb, were characterized with respect to their circular dichroism spectra, amino acid compositions, reactive sulfhydryl groups, and partial amino- and carboxy-terminal sequences. The results indicate that the Ba fragment constitutes the amino-terminal region and the Bb fragment the carboxy-terminal region of Factor B. The bond in Factor B that is cleaved by Factor D is proposed to be an arginyl-lysine bond. 相似文献
7.
Katschke KJ Wu P Ganesan R Kelley RF Mathieu MA Hass PE Murray J Kirchhofer D Wiesmann C van Lookeren Campagne M 《The Journal of biological chemistry》2012,287(16):12886-12892
By virtue of its amplifying property, the alternative complement pathway has been implicated in a number of inflammatory diseases and constitutes an attractive therapeutic target. An anti-factor D Fab fragment (AFD) was generated to inhibit the alternative complement pathway in advanced dry age-related macular degeneration. AFD potently prevented factor D (FD)-mediated proteolytic activation of its macromolecular substrate C3bB, but not proteolysis of a small synthetic substrate, indicating that AFD did not block access of the substrate to the catalytic site. The crystal structures of AFD in complex with human and cynomolgus FD (at 2.4 and 2.3 Å, respectively) revealed the molecular details of the inhibitory mechanism. The structures show that the AFD-binding site includes surface loops of FD that form part of the FD exosite. Thus, AFD inhibits FD proteolytic function by interfering with macromolecular substrate access rather than by inhibiting FD catalysis, providing the molecular basis of AFD-mediated inhibition of a rate-limiting step in the alternative complement pathway. 相似文献
8.
C3b deposition during activation of the alternative complement pathway and the effect of deposition on the activating surface 总被引:7,自引:0,他引:7
M K Pangburn R D Schreiber H J Müller-Eberhard 《Journal of immunology (Baltimore, Md. : 1950)》1983,131(4):1930-1935
Examination of C3b deposition on the surface of activators during alternative pathway activation revealed three temporal phases: a lag phase, an amplification phase, and a heretofore uncharacterized plateau phase. During the plateau phase no C3b deposition appeared to occur even in the presence of an excess of alternative pathway components. Double label experiments, however, revealed that the plateau was a steady state between continued C3b deposition and release of C3b or C3bi from the activator. Under conditions of excess complement it was found that deposition of increasing numbers of C3b molecules caused a gradual increase in the ability of Factors H and I to inactivate newly deposited C3b; i.e., the deposited C3b converted the activator into a nonactivator. The data indicate that the surface of rabbit erythrocytes is rendered completely nonactivating when 2.4 X 10(6) molecules of C3b plus C3bi are bound per cell. The plateau of C3b deposition appears to represent the maximum steady state level maintainable by a given concentration of complement components, and it also reflects conversion of an activating surface to one resembling a nonactivator. 相似文献
9.
Reconstitution of C5 convertase of the alternative complement pathway with isolated C3b dimer and factors B and D 总被引:2,自引:0,他引:2
K Hong T Kinoshita P Pramoonjago Y U Kim T Seya K Inoue 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(6):1868-1873
C5 convertase of the alternative complement pathway is a trimolecular complex consisting of two molecules of C3b and one molecule of Bb. We previously proposed a model of the alternative pathway C5 convertase in which the second C3b molecule binds covalently to the first C3b molecule bearing Bb, and the C5 molecule binds to each C3b molecule of the covalently linked C3b dimer, resulting in its appropriate presentation to the catalytic site on Bb. In the present study, we purified the covalently linked C3b dimer and reconstituted the C5 convertase with the C3b dimer and factors B and D to obtain evidence in support of this model. An insoluble glucan, OMZ-176, was incubated with human serum to activate the alternative pathway and to allow formation of the alternative C5 convertase on the surface of the glucan, and the glucan bearing the C5 convertase was then solubilized by incubation with glucosidases. In this way, the covalently linked C3b dimer was obtained in solution without using a detergent. The C3b dimer was then separated from enzymes, C3b monomer, C3b oligomer, and other materials by chromatographies. SDS-PAGE analysis demonstrated that the purified C3b dimer had intact alpha'-chains. Alternative pathway C5 convertase was reconstituted when the isolated C3b dimer was incubated with factors B and D. The presence of P enhanced C5 convertase formation threefold. These results support the notions that the formation of the covalently linked C3b dimer is a general phenomenon associated with activation of the alternative pathway and that the C3b dimer acts as a part of the C5 convertase. 相似文献
10.
Analysis of the interaction between properdin and factor B, components of the alternative-pathway C3 convertase of complement. 总被引:1,自引:0,他引:1 下载免费PDF全文
Denervated (1-10 days) rat epitrochlearis muscles were isolated, and basal and insulin-stimulated protein and glucose metabolism were studied. Although basal rates of glycolysis and glucose transport were increased in 1-10-day-denervated muscles, basal glycogen-synthesis rates were unaltered and glycogen concentrations were decreased. Basal rates of protein degradation and synthesis were increased in 1-10-day-denervated muscles. The increase in degradation was greater than that in synthesis, resulting in muscle atrophy. Increased rates of proteolysis and glycolysis were accompanied by elevated release rates of leucine, alanine, glutamate, pyruvate and lactate from 3-10-day-denervated muscles. ATP and phosphocreatine were decreased in 3-10-day-denervated muscles. Insulin resistance of glycogen synthesis occurred in 1-10-day denervated muscles. Insulin-stimulated glycolysis and glucose transport were inhibited by day 3 of denervation, and recovered by day 10. Inhibition of insulin-stimulated protein synthesis was observed only in 3-day-denervated muscles, whereas regulation by insulin of net proteolysis was unaffected in 1-10-day-denervated muscles. Thus the results demonstrate enhanced glycolysis, proteolysis and protein synthesis, and decreased energy stores, in denervated muscle. They further suggest a defect in insulin's action on protein synthesis in denervated muscles as well as on glucose metabolism. However, the lack of concurrent changes in all insulin-sensitive pathways and the absence of insulin-resistance for proteolysis suggest multiple and specific cellular defects in insulin's action in denervated muscle. 相似文献
11.
Noriko Okada Tatsuji Yasuda Tohru Tsumita Hiroto Shinomiya Sayaka Utsumi Hidechika Okada 《Biochemical and biophysical research communications》1982,108(2):770-775
The effect of glycophorin on complement activation via the alternative pathway was examined by incorporating it into the liposome membrane with trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine (TNP-Cap-DPPE). Liposomes having incorporated TNP-Cap-DPPE onto the membrane activate the alternative complement pathway of guinea pig as reported previously, and the additional insertion of glycophorin was found to reduce their activating capacity on the alternative complement pathway. This inhibitory effect was cancelled by pretreatment of the glycophorin-containing liposomes with neuraminidase indicating that the sialic acid in glycophorin is playing a role in the regulation of alternative complement pathway-activation on the biological membrane. 相似文献
12.
Structures of the asparagine-linked oligosaccharides of guinea-pig factor B of the alternative complement pathway. 下载免费PDF全文
This paper describes the structures of the asparagine-linked oligosaccharides of two forms of guinea-pig Factor B of the alternative complement pathway with different Mr values. Oligosaccharides were quantitatively liberated from both glycoproteins by hydrazinolysis, fractionated by paper electrophoresis and Bio-Gel P-4 column chromatography, and their structures determined by sequential exoglycosidase digestions in conjunction with methylation analysis. Both glycoproteins were shown to have the same biantennary complex-type oligosaccharides but it is suggested that they contain different numbers of oligosaccharide chains. 相似文献
13.
Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation 总被引:4,自引:0,他引:4
Xu W Berger SP Trouw LA de Boer HC Schlagwein N Mutsaers C Daha MR van Kooten C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(11):7613-7621
Cells that undergo apoptosis or necrosis are promptly removed by phagocytes. Soluble opsonins such as complement can opsonize dying cells, thereby promoting their removal by phagocytes and modulating the immune response. The pivotal role of the complement system in the handling of dying cells has been demonstrated for the classical pathway (via C1q) and lectin pathway (via mannose-binding lectin and ficolin). Herein we report that the only known naturally occurring positive regulator of complement, properdin, binds predominantly to late apoptotic and necrotic cells, but not to early apoptotic cells. This binding occurs independently of C3b, which is additional to the standard model wherein properdin binds to preexisting clusters of C3b on targets and stabilizes the convertase C3bBb. By binding to late apoptotic or necrotic cells, properdin serves as a focal point for local amplification of alternative pathway complement activation. Furthermore, properdin exhibits a strong interaction with DNA that is exposed on the late stage of dying cells. Our data indicate that direct recognition of dying cells by properdin is essential to drive alternative pathway complement activation. 相似文献
14.
Hui KM Magnadóttir B Schifferli JA Inal JM 《Biochemical and biophysical research communications》2006,344(1):308-314
Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4beta chain, which is responsible for the binding of C2. Since the CP and alternative pathway (AP) C3 convertases have many functional and structural similarities, we further investigated the effects of CRIT-H17 on the AP. The factor D-mediated cleavage of factor B (FB) was blocked by CRIT-H17. By ELISA and immunoblot, CRIT-H17 was shown to bind FB. CRIT-H17 had no decay activity on the C3bBb complex as compared to decay-accelerating factor. Binding of CRIT-H17 to FB did not interfere with the assembly of C3bB complex. In a haemolytic assay using C2-deficient serum, CRIT-H17 interfered with AP complement activation. 相似文献
15.
16.
17.
Effect of membrane phospholipids on activation of the alternative complement pathway 总被引:4,自引:0,他引:4
C Mold 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(5):1663-1668
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation. 相似文献
18.
C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme 总被引:3,自引:0,他引:3
T Kinoshita Y Takata H Kozono J Takeda K S Hong K Inoue 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(11):3895-3901
C5 convertase of the alternative C pathway is a complex enzyme consisting of three C fragments--one molecule of a major fragment of factor B (Bb) and two molecules of a major fragment of C3 (C3b). Within this C3bBbC3b complex, the first C3b binds covalently to the target surface, and Bb, which bears a catalytic site, binds noncovalently to the first C3b. In the present investigation, we studied the nature of the convertase that is assembled on E surfaces and obtained evidence that the second C3b binds directly to the alpha'-chain of the first through an ester bond rather than to the target surface. Thus, the alternative pathway C5 convertase could be described as a trimolecular complex in which Bb binds noncovalently to a covalently linked C3b dimer. We also obtained evidence that not only the second C3b but also the first C3b participates in binding C5, that is, covalently-linked C3b dimer acts as a substrate-binding site. Because of this two-site binding, the convertase has a much higher affinity for C5 than the surrounding monomeric C3b molecules. Based on this evidence, a new model of the alternative pathway C5 convertase is proposed. Covalent association of two subunits and the bivalent binding of the substrate are then common properties of the alternative and classical pathway C5 convertases. 相似文献
19.
Iwaki D Kanno K Takahashi M Endo Y Matsushita M Fujita T 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(7):3751-3758
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway. 相似文献
20.
The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. 总被引:15,自引:3,他引:15 下载免费PDF全文
Preformed immune aggregates, containing antigen and either IgG (immunoglobulin G) or F(ab')2 rabbit antibody, were incubated with normal human serum under conditions allowing activation of only the alternative pathway of complement. Both the IgG and F(ab')2 immune aggregates bound C3b, the activated form of the complement component C3, in a similar manner, 2-3% of the C3 available in the serum being bound to the aggregates as C3b, and the rest remaining in the fluid phase as inactive C3b or uncleaved C3. It was found that the C3b was probably covalently bound to the IgG in the aggregates, since C3b-IgG complexes could be demonstrated on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, after repeated washing with buffers containing high salt or boiling under denaturing conditions. Incubation of the C3b-antibody-antigen aggregates in buffers known to destroy ester linkages had little effect on the C3b-IgG complexes, which suggested that C3b and IgG might be linked by an amide bond. Two main types of C3b-IgG complexes were found that had apparent mol.wts. of 360000 and 580000, corresponding to either one to two C3b molecules respectively bound to one molecule of antibody. On reduction of the C3b-IgG complexes it was found that the beta-chain, but not the alpha'-chain, of C3b was released along with all the light chain of IgG but only about half or less of the heavy chain of IgG. These results indicate that, during activation of the alternative pathway of complement by immune aggregates containing IgG antibody, the alpha'-chain of C3b may become covalently bound at one or two sites in the Fd portion of the heavy chain of IgG. 相似文献