首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract An artificial glycoconjugate containing, as a ligand, the deacylated carbohydrate backbone of a recombinant Chlamydia -specific lipopolysaccharide was used as a solid-phase antigen in ELISA to measure antibodies against chlamydial LPS. The specificity and reproducibility of the assay was shown by using a panel of prototype monoclonal antibodies representing the spectrum of antibodies also occuring in patient sera. These mAbs recognized Chlamydia -specific epitopes [ α 2→8-linked disaccharide of 3-deoxy- d - manno -octulosonic acid (Kdo) or the trisaccharide α Kdo-(2→8)-→Kdo] or those shared between chlamydial and Re-type LPS ( α Kdo, α →4-linked Kdo disacccharide). The assay was used to measure IgG, IgA and IgM antibodies against chlamydial LPS in patients with genital or respiratory tract infections. In comparison to the results obtained with sera from blood donors, it became evident that both types of infection result in significant changes in the profile of LPS antibodies.  相似文献   

2.
Lipopolysaccharide (LPS) of Chlamydophila psittaci but not of Chlamydophila pneumoniae or Chlamydia trachomatis contains a tetrasaccharide of 3-deoxy-alpha-d-manno-oct-2-ulopyranosonic acid (Kdo) of the sequence Kdo(2-->8)[Kdo(2-->4)] Kdo(2-->4)Kdo. After immunization with the synthetic neoglycoconjugate antigen Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4) Kdo-BSA, we obtained the mouse monoclonal antibody (mAb) S69-4 which was able to differentiate C. psittaci from Chlamydophila pecorum, C. pneumoniae, and C. trachomatis in double labeling experiments of infected cell monolayers and by enzyme-linked immunosorbent assay (ELISA). The epitope specificity of mAb S69-4 was determined by binding and inhibition assays using bacteria, LPS, and natural or synthetic Kdo oligosaccharides as free ligands or conjugated to BSA. The mAb bound preferentially Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4)Kdo(2-->4) with a K(d) of 10 microM, as determined by surface plasmon resonance (SPR) for the monovalent interaction using mAb or single chain Fv. Cross-reactivity was observed with Kdo(2-->4)Kdo(2-->4) Kdo but not with Kdo(2-->8)Kdo(2-->4)Kdo, Kdo disaccharides in 2-->4- or 2-->8-linkage, or Kdo monosaccharide. MAb S69-4 was able to detect LPS on thin-layer chromatography (TLC) plates in amounts of <10 ng by immunostaining. Due to the high sensitivity achieved in this assay, the antibody also detected in vitro products of cloned Kdo transferases of Chlamydia. The antibody can therefore be used in medical and veterinarian diagnostics, general microbiology, analytical biochemistry, and studies of chlamydial LPS biosynthesis. Further contribution to the general understanding of carbohydrate-binding antibodies was obtained by a comparison of the primary structure of mAb S69-4 to that of mAb S45-18 of which the crystal structure in complex with its ligand has been elucidated recently (Nguyen et al., 2003, Nat. Struct. Biol., 10, 1019-1025).  相似文献   

3.
DNA cloned from Chlamydia trachomatis is able to direct the formation of the genus-specific lipopolysaccharide epitope of chlamydiae in enteric Gram-negative bacteria. We now demonstrate that a single C. trachomatis gene (gseA) is sufficient to impart this trait to Escherichia coli. The deduced amino acid sequence of gseA shows 23% identity (66% similarity) to kdtA, an E. coli gene that codes for a bifunctional enzyme catalyzing the addition of two 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A precursors (Clementz, T., and Raetz, C. R. H. (1991) J. Biol. Chem. 266, 9687-9696). Extracts of E. coli expressing gseA transfer at least one additional Kdo unit from CMP-Kdo to precursors already bearing the two Kdo residues attached by the kdtA gene product. Introduction of gseA into an E. coli mutant with a thermolabile kdtA gene product endows cell extracts with the ability to transfer not only the third but also the first two Kdos to lipid A precursors, demonstrating that the C. trachomatis enzyme is at least trifunctional. Given the similarities of these two Kdo transferases and the essentiality of Kdo in Gram-negative bacteria, lipopolysaccharide biosynthesis may be a target for development of novel drugs effective against chlamydiae.  相似文献   

4.
This is the first report describing the analysis of a gene encoding an α-glucuronidase, an enzyme essential for the complete breakdown of substituted xylans. A DNA fragment that carries the gene for α-glucuronidase was isolated from chromosomal DNA of the hyperthermophilic bacterium Thermotoga maritima MSB8. The α-glucuronidase gene ( aguA ) was identified and characterized with the aid of nucleotide sequence analysis, deletion experiments and expression studies in Escherichia coli , and the start of the coding region was defined by amino-terminal sequencing of the purified recombinant enzyme. The aguA gene encodes a 674-amino-acid, largely hydrophilic polypeptide with a calculated molecular mass of 78 593 Da. The α-glucuronidase of T. maritima has a novel primary structure with no significant similarity to any other known amino acid sequence. The recombinant enzyme was purified to homogeneity as judged by SDS–PAGE. Gel filtration analysis at low salt concentrations revealed a high apparent molecular mass (<630kDa) for the recombinant enzyme, but the oligomeric structure changed upon variation of the ionic strength or the pH, yielding hexameric and/or dimeric forms which were also enzymatically active. The enzyme hydrolysed 2- O -(4- O -methyl-α- d -glucopyranosyluronic acid)- d -xylobiose (MeGlcAX2) to xylobiose and 4- O -methylglucuronic acid. The K m for MeGlcAX2 was 0.95mM. The pH optimum was 6.3. Maximum activity was measured at 85°C, about 25°C or more above the values reported for all other α-glucuronidases known to date. When incubated at 55–75°C, the enzyme suffered partial inactivation, but thereafter the residual activity remained nearly constant for several days.  相似文献   

5.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   

6.
Chlamydiae possess a genus-specific epitope that is located on the lipopolysaccharide (LPS) and is composed of a 3-deoxy-d -manno-octulosonic acid (Kdo) trisaccharide of the sequence αKdo-(2→8)–αKdo–(2→4)-αKdo. In Chlamydia trachomatis, this trisaccharide is biosynthetically generated through the action of a multi-functional Kdo-transferase encoded by the gene gseA. gseA of Chlamydia psittaci 6BC was cloned and expressed in a rough mutant (Re chemotype) of Escherichia coli (strain F515) that contains an LPS with only two α2→4-linked Kdo residues. Recombinant strains were able to add the immunodominant Kdo residue in a α2→8-linkage to the parental LPS, as determined by SDS–PAGE and Western blot analysis using a monoclonal antibody against the genus-specific epitope. The DNA sequence of gseA was determined and aligned to that published recently for C. trachomatis serovar L2. Most surprisingly, the two deduced amino acid sequences shared only an overall homology of 67%. Thus, gseA exhibits species specificity at the DNA level, whereas its gene product results in the synthesis of a carbohydrate antigen with genus specificity.  相似文献   

7.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo.  相似文献   

8.
The enzyme 3-deoxy-D-manno-octulosonic acid (Kdo) transferase is encoded by the kdtA gene of Escherichia coli and plays a key role in lipopolysaccharide biosynthesis. It transfers Kdo from CMP-Kdo to lipid A or its tetraacyldisaccharide-1,4'-bisphosphate precursor, lipid IVA. Using a strain that overproduces the transferase approximately 500-fold, we have purified the enzyme to near homogeneity. The subunit molecular mass is approximately 43 kDa. Activity is stimulated by Triton X-100, is maximal at pH 7, but does not require Mg2+. The apparent Km values for lipid IVA and CMP-Kdo are 52 and 88 microM, respectively. Vmax is 15-18 mumol/min/mg when both substrates are added near saturation at pH 8. The purified enzyme transfers 2 Kdo residues to lipid A precursors or analogs bearing four to six fatty acyl chains and a 4'-monosphosphate moiety. Activity is inhibited by polymixin B and Re endotoxin. At low Kdo concentrations small amounts of the intermediate, (Kdo)1-IVA, accumulate. When this substance is isolated and incubated with purified enzyme in the presence of CMP-Kdo, it is converted to (Kdo)2-IVA. Formation of (Kdo)1-IVA is also observed when purified enzyme is incubated with (Kdo)2-IVA and 5 mM CMP, demonstrating that Kdo transfer is reversible. In summary, Kdo transferase consists of a single bifunctional polypeptide that incorporates the 2 innermost Kdo residues common to all lipopolysaccharide molecules in E. coli.  相似文献   

9.
GseA is an enzyme from Chlamydia trachomatis that can catalyse the addition of three 3-deoxy-D-manno-octulosonic acid (Kdo) residues onto lipid A precursors. GseA is similar, and in a few stretches identical, in its amino acid sequence to KdtA, an Escherichia coli Kdo transferase. In this study we altered an amino acid of GseA in a region that is identical between GseA and KdtA to test its importance in the structure or catalytic activity of GseA. We found that when Arg276 was changed to Lys, Ile or Ser, GseA activity was lost, suggesting an enzymatic role for this amino acid residue.  相似文献   

10.
The 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase gene of Legionella pneumophila was cloned and sequenced. Despite remarkable structural differences in lipid A, the gene complemented a corresponding Escherichia coli mutant and was shown to encode a bifunctional enzyme which transferred 2 Kdo residues to a lipid A acceptor of E. coli.  相似文献   

11.
O Holst  L Brade  P Kosma    H Brade 《Journal of bacteriology》1991,173(6):1862-1866
The human bacterial pathogens Chlamydia spp. possess a genus-specific lipopolysaccharide as a major surface antigen, the structure of which has been determined by analytical chemistry as Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha 2-6GlcNp beta 1-6-GlcNol (Kdo, 3-deoxy-D-manno-2-octulosonic acid). Immunochemical studies on this pentasaccharide and the chemically synthesized partial structures Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha 2-6GlcNp beta, Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha, Kdop alpha 2-4-Kdop alpha, Kdop alpha 2-8-Kdop alpha, and Kdop alpha using artificial glycoconjugate antigens and monoclonal antibodies showed that fatty acids and phosphoryl groups (as present in native lipopolysaccharide) are dispensable for constitution of the genus-specific epitope and that the minimal structure to exhibit chlamydia specificity is the Kdo trisaccharide moiety.  相似文献   

12.
13.
The lipopolysaccharide (LPS) of the deep rough mutant Haemophilus influenzae I69 consists of lipid A and a single 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue substituted with one phosphate at position 4 or 5 (Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T., and Z?hringer, U. (1988) Eur. J. Biochem. 177, 483-492). The waaA gene encoding the essential LPS-specific Kdo transferase was cloned from this strain, and its nucleotide sequence was identical to H. influenzae DSM11121. The gene was expressed in the Gram-positive host Corynebacterium glutamicum and characterized in vitro to encode a monofunctional Kdo transferase. waaA of H. influenzae could not complement a knockout mutation in the corresponding gene of an Re-type Escherichia coli strain. However, complementation was possible by coexpressing the recombinant waaA together with the LPS-specific Kdo kinase gene (kdkA) of H. influenzae DSM11121 or I69, respectively. The sequences of both kdkA genes were determined and differed in 25 nucleotides, giving rise to six amino acid exchanges between the deduced proteins. Both E. coli strains which expressed waaA and kdkA from H. influenzae synthesized an LPS containing a single Kdo residue that was exclusively phosphorylated at position 4. The structure was determined by nuclear magnetic resonance spectroscopy of deacylated LPS. Therefore, the reaction products of both cloned Kdo kinases represent only one of the two chemical structures synthesized by H. influenzae I69.  相似文献   

14.
The industrially widely used polysaccharide alginate is a co-polymer of β- d -mannuronic acid and α- l -guluronic acid (G), and the G residues originate from a polymer-level epimerization process catalysed by mannuronan C-5-epimerases. In the genome of the alginate-producing bacterium Azotobacter vinelandii genes encoding one periplasmic (AlgG) and seven secreted such epimerases (AlgE1–7) have been identified. Here we report the generation of a strain (MS163171) in which all the algE genes were inactivated by deletion ( algE1–4 and algE6–7 ) or interruption ( algE5 ). Shake flask-grown MS163171 produced a polymer containing less than 2% G ( algG still active), while wild-type alginates contained 25% G. Interestingly, addition of proteases to the MS163171 growth medium resulted in a strong increase in the chain lengths of the alginates produced. MS163171 was found to be unable to form functional cysts, which is a desiccation-resistant differentiated form developed by A. vinelandii under certain environmental conditions. We also generated mutants carrying interruptions in each separate algE gene, and a strain containing algE5 only. Studies of these mutants indicated that single algE gene inactivations, with the exception of algE3 , did not affect the fractional G content much. However, for all strains tested the alginate composition varied somewhat as a response to the growth conditions.  相似文献   

15.
Abstract: β-Trace protein from pooled human CSF was purified to homogeneity. An apparent molecular mass of 23–29 kDa was determined for the polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal sequencing of the polypeptide yielded the unique amino acid sequence APEAQVSVQPNFQQDKFLGRWFSA24. Alignment of amino acid sequences obtained from tryptic peptides with the sequence previously deduced from a cDNA clone isolated by other investigators allowed the identification of β-trace protein as prostaglandin D synthase [prostaglandin-H2 D-isomerase; (5 Z , 13 E )-(15 S )-9α, 11 a-epidioxy-15-hydroxyprosta-5,13-dienoate D-isomerase; EC 5.3.99.2]. A conservative amino acid exchange (The instead of Ser) was detected at amino acid position 154 of the β-trace polypeptide chain in the corresponding tryptic peptide. The two N -glycosylation sites of the polypeptide were shown to be almost quantitatively occupied by carbohydrate. Carbohydrate compositional as well as methylation analysis indicated that Asn29and Asn56 bear exclusively complex-type oligosaccharide structures (partially sialylated with α2–3- and/or α2–6-linked N -acetylneuraminic acid) that are almost quantitatively α1-6 fucosylated at the proximal N -acetylglucosamine; ∼70% of these molecules contain a bisecting N -acetylglucosamine. Agalacto structures as well as those with a peripheral fucose are also present.  相似文献   

16.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

17.
The production of α- l -rhamnosidase by Aspergillus nidulans has been investigated. In the presence of rhamnose as sole carbon source, this fungus produces an α- l -rhamnosidase of molecular weight 90 kDa. Production of this enzyme is under carbon catabolite repression, apparently by a CreA-independent system. At acidic ambient pH there is an increase in the synthesis of the enzyme which is not related to PacC. Using ρ-nitrophenyl-α- l -rhamnopyranoside as substrate, the enzyme activity in culture filtrates shows pH and temperature optima of 4·5–8 and 40–50 °C, respectively. At the concentrations found in must or wine, enzyme activity was only slightly affected by glucose and SO2 and partly inhibited by ethanol, indicating a potential for use in wine aroma release.  相似文献   

18.
The ability of several human gut bacteria to break down α-1,2 and α-1,6 glycosidic linkages in α-gluco-oligosaccharides (GOS) was investigated in vitro in substrate utilization tests. Bacteroides thetaiotaomicron, Bifidobacterium breve and Clostridium butyricum , which are usually found in the infant gut and have been associated with both beneficial and deleterious effects on health, were studied. α-Gluco-oligosaccharide degradation was compared in vitro and in vivo in gnotobiotic rats associated with these organisms, inoculated alone or in combination. Oligomer breakdown and short chain fatty acid and gas production indicated hydrolysis and fermentation of the substrate. In vitro and in vivo, Cl. butyricum was the least efficient in utilizing GOS, whereas Bact. thetaiotaomicron was the most efficient. Kinetic studies on GOS hydrolysis in pH-regulated fermenters showed that α-1,2 glucosidic bonds, which characterize the substrate, were more resistant than α-1,6 linkages. Adaptation of gnotobiotic rats to a diet containing 2% (w/w) GOS significantly increased the hydrolysis of α 1,2 glucosidic bonds. Combination of bacteria in trixenic rats improved GOS degradation and inhibited Cl. butyricum metabolism. This inhibition was confirmed in pH-regulated fermenters containing GOS as the principal carbon source. The association of beneficial bacteria and GOS may therefore have a potential health-promoting effect in human necnates.  相似文献   

19.
Abstract: Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with K D values of 1–2 n M and B max values of 560–850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an α-bungarotoxin (α-BGT)-agarose affinity column are known to be α-subunit homooligomers. This study uses 1 - [ N - (6 - chloro - 3 - pyridylmethyl) - N - ethyl]amino - 1 - amino-2-nitroethene (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2–3 n M ) to develop a neonicotinoid-agarose affinity column. The procedure—introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamide gel electrophoresis—gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the α-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-α-BGT-4-azidosalicylic acid gives a labeled derivative of 66–69 kDa. The yield is 2–5 µg of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.  相似文献   

20.
The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-D-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IV(A). In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号