首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

2.
A commercial isotope dilution assay was used for the determination of Ins(1,4,5)P3 levels in the microorganism Dictyostelium discoideum. Cross-reactivity in the assay was detected with extracts from cells and the medium. The compound which induced this cross-reactivity was tentatively identified as Ins(1,4,5)P3 by (i) codegradation with authentic [32P]Ins(1,4,5)P3 by three specific Ins(1,4,5)P3 phosphatases, and (ii) co-chromatography with authentic [32P]Ins(1,4,5)P3 on HPLC columns. The cellular concentration was estimated as 165 +/- 42 pmol/10(8) cells, yielding a mean intracellular Ins(1,4,5)P3 concentration of 3.3 microM. Dictyostelium cells secrete large amounts of Ins(1,4,5)P3 at a rate of about 10% of the cellular content per minute, yielding about 0.13 microM extracellular Ins(1,4,5)P3 after 15 min in a suspension of 10(8) cells/ml. The chemoattractant cAMP induced a transient increase of the Ins(1,4,5)P3 concentration; the data suggest an intracacellular rise from 3.3 to 5.5 microM with a maximum at 6 s after stimulation.  相似文献   

3.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

4.
The lifetime of inositol 1,4,5-trisphosphate in single cells   总被引:4,自引:0,他引:4       下载免费PDF全文
In many eukaryotic cell types, receptor activation leads to the formation of inositol 1,4,5-trisphosphate (IP3) which causes calcium ions (Ca) to be released from internal stores. Ca release was observed in response to the muscarinic agonist carbachol by fura-2 imaging of N1E-115 neuroblastoma cells. Ca release followed receptor activation after a latency of 0.4 to 20 s. Latency was not caused by Ca feedback on IP3 receptors, but rather by IP3 accumulation to a threshold for release. The dependence of latency on carbachol dose was fitted to a model in which IP3 synthesis and degradation compete, resulting in gradual accumulation to a threshold level at which Ca release becomes regenerative. This analysis gave degradation rate constants of IP3 in single cells ranging from 0 to 0.284 s-1 (0.058 +/- 0.067 s-1 SD, 53 cells) and a mean IP3 lifetime of 9.2 +/- 2.2 s. IP3 degradation was also measured directly with biochemical methods. This gave a half life of 9 +/- 2 s. The rate of IP3 degradation sets the time frame over which IP3 accumulations are integrated as input signals. IP3 levels are also filtered over time, and on average, large-amplitude oscillations in IP3 in these cells cannot occur with period < 10 s.  相似文献   

5.
Chemotactic signalling in the cellular slime mould Dictyostelium discoideum employs signalling molecules such as folate and cyclic AMP. These bind to specific cell surface receptors and rapidly trigger internal responses that induce chemotactic movement of the amoebae. Previous studies have shown that actin is polymerised within 3-5 sec of cyclic AMP or folate binding and that a peak of cyclic GMP is formed within 9-12 sec. Release of Ca2+ from intracellular stores has been implicated as a secondary messenger. Here we present evidence that D-myo-inositol 1,4,5-trisphosphate, when added to permeabilized amoebae of Dictyostelium, can mimic the action of chemoattractants on normal intact amoebae in inducing cyclic GMP formation. Our data suggest that IP3, which is known to act as an intermediary messenger between cell surface hormone receptors and release of Ca2+ from internal stores in mammalian cells, functions in a similar capacity during chemotaxis of this primitive eukaryote.  相似文献   

6.
The role of phosphoinositide turnover in the mediation of acid secretion was examined in an enriched preparation of isolated rabbit parietal cells (75%). Both gastrin and CCK-8 (octapeptide of cholecystokinin) stimulated [14C]aminopyrine (AP) uptake by cells (EC50 0.07 +/- 0.03 nM (gastrin) and 0.093 +/- 0.065 nM (CCK-8] and increased [3H]inositol phosphates cellular contents (EC50 0.142 +/- 0.016 nM (gastrin) and 0.116 +/- 0.027 nM (CCK-8] in a parallel fashion. In addition, the EC50 values for both phenomenon were quite similar to the Kd values obtained from binding experiments. HPLC analysis of the different [3H]inositol phosphates produced under gastrin or CCK-8 stimulation showed a 2-fold increase in [3H]Ins(1,4,5)P3 levels within 5 s with a concomitant increase in [3H]Ins(1,4)P2 content within 15 s. A low but significant rise in [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 cellular contents was also observed. No difference between gastrin- and CCK-8-induced inositol phosphates production could be shown. We can conclude that gastrin and CCK-8 display an identical profile of action, suggesting that they stimulate the acid secretory function of parietal cells through the same receptor site coupled to the Ins(1,4,5)P3 production.  相似文献   

7.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

8.
Phosphoinositide-specific phospholipase C (PI-PLC) has been shown to be transiently activated when plant cells were treated with elicitors. We thus investigated the activity of PI-PLC when soybean cells were infected with the bacterial pathogen Pseudomonas syringae pv. glycinea, by measuring cellular cytosolic inositol 1,4,5-trisphosphate (IP3) levels. We observed that IP3 content decreased in both compatible and incompatible interactions. In vitro phosphatase activities were similar in both water control and infected cells with slightly lower IP3 degradation observed for infected cells, indicating that the reduced IP3 content in infected cells most likely results from reduced PI-PLC activity. We hypothesize that reduced IP3 content following infection may lead to suppression of various housekeeping activities of the cells, thus diverting the cellular resources either to the synthesis of defense-related compounds against pathogens, and/or to the growth of pathogens.  相似文献   

9.
Cyanide-induced neurotoxicity is associated with altered cellular Ca2+ homeostasis resulting in sustained elevation of cytosolic Ca2+. In order to characterize the effect of cyanide on intracellular signaling mechanisms, the interaction of KCN with the inositol 1,4,5-triphosphate Ca2+ signaling system was determined in the PC12 cell line. KCN in the concentration range of 1.0–100 μM produced a rapid rise in intracellular IP3 levels (peak level occurred within 60 sec); 10 μM KCN elevated intracellular levels of IP3 to 148% of control levels. This response was mediated by phospholipase C (PLC) since U73122, a specific PLC inhibitor, blocked the response. Removal of Ca2+ from the incubation medium and chelation of intracellular Ca2+ with BAPTA partially attenuate the cyanide-stimulated IP3 generation, showing that the response is partially Ca2+ dependent. Also, treatment of cells with nifedipine or LaCl3, Ca2+ channel blockers, partially blocked the generation of IP3. This study shows that cyanide in concentrations as low as 1 μM stimulates IP3 generation that may be mediated by receptor and nonreceptor IP3 production since they have differential dependence on Ca2+. It is proposed that this response is an early intracellular signaling action that can contribute to altered Ca2+ homeostasis characteristic of cyanide neurotoxicity. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
The sarcoplasmic reticulum (SR) of skeletal muscle is an intracellular membranous network that controls the myoplasmic Ca2+ concentration and the contraction-relaxation cycle. Ca2+ release from the terminal cisternae (TC) region of the SR evokes contraction. How electrical depolarization of the transverse tubule is linked to Ca2+ release from the junctionally associated TC is still largely unknown. Independent evidence has been recently obtained indicating that either inositol trisphosphate (IP3) or (and) Ca2+ is (are) the chemical transmitter(s) of excitation-contraction coupling. Here we outline the experimental data in support of each transmitter and discuss possible interactive roles of Ca2+ and IP3.  相似文献   

11.
Inositol 1,4,5-trisphosphate receptor (IP3R) is one of the important calcium channels expressed in the endoplasmic reticulum and has been shown to play crucial roles in various physiological phenomena. Type 3 IP3R is expressed in taste cells, but the physiological relevance of this receptor in taste perception in vivo is still unknown. Here, we show that mice lacking IP3R3 show abnormal behavioral and electrophysiological responses to sweet, umami, and bitter substances that trigger G-protein-coupled receptor activation. In contrast, responses to salty and acid tastes are largely normal in the mutant mice. We conclude that IP3R3 is a principal mediator of sweet, bitter, and umami taste perception and would be a missing molecule linking phospholipase C beta2 to TRPM5 activation.  相似文献   

12.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   

13.
14.
The metabolism of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] consists of two pathways: dephosphorylation by 5-phosphomonoesterase(s) produces inositol 1,4-bisphosphate, and phosphorylation by Ins(1,4,5)P3 3-kinase yields inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The requirements for Ins(1,4,5)P3 kinase activity in retina were characterized. Apparent Km values for ATP and Ins(1,4,5)P3 are 1.4 mM and 1.3 microM respectively. A direct demonstration of phosphorylation of Ins(1,4,5)P3 by [gamma-32P]ATP was achieved. Characterization of the 32P-labelled product revealed that it had the expected chromatographic and electrophoretic properties of Ins(1,3,4,5)P4.  相似文献   

15.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

16.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

17.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

18.
In a cytosolic fraction derived from insulin-secreting RINm5F cells, the rate of conversion of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) was half-maximally stimulated by 0.8 microM Ca2+ (Biden, T. J., and Wollheim, C. B. (1986) J. Biol. Chem. 261, 11931-11934). In the present study we show that after initial purification by anion exchange chromatography, the Ins-1,4,5-P3 kinase activity responsible for that conversion is stimulated by Ca2+-calmodulin, but not by Ca2+ alone. This is almost certainly due to a specific interaction of the enzyme and its activator since kinase activity was retained on a calmodulin-linked Sepharose 6B column in the presence of Ca2+ but eluted upon chelation of the cation. After this two-step purification, Ins-1,4,5-P3 kinase activity was maximally stimulated 5-fold by 10 microM calmodulin in the presence of 10(-5) M Ca2+, and 2 1/2-fold at 10(-6) M Ca2+. Under these conditions the minimum concentrations of calmodulin needed to stimulate activity were in the 10-50 nM range. At 10(-7) M Ca2+, calmodulin (up to 30 microM) was without effect. Stimulated Ins-1,4,5-P3 kinase activity was inhibited in a dose-dependent fashion by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) although the calmodulin antagonist had no effect on the residual activity seen at 10(-7) M Ca2+. These results strongly support our previous suggestion that alterations in cytosolic free Ca2+ concentrations play an important role in regulating the levels of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 during cellular stimulation.  相似文献   

19.
The role of inositol 1,4,5-trisphosphate receptors (IP(3)R) in caspase-3 activation and cell death was investigated in DT40 chicken B-lymphocytes stably expressing various IP(3)R constructs. Both full-length type-I IP(3)R and a truncated construct corresponding to the caspase-3 cleaved "channel-only" fragment were able to support staurosporine (STS)-induced caspase-3 activation and cell death even when the IP(3)R construct harbored a mutation that inactivates the pore of the Ca(2+) channel (D2550A). However, a full-length wild-type IP(3)R did not promote caspase-3 activation when the 159-amino acid cytosol-exposed C-terminal tail was deleted. STS caused an increase in cytosolic free Ca(2+) in DT40 cells expressing wild-type or pore-dead IP(3)R mutants. However, in the latter case all the Ca(2+) increase originated from Ca(2+) entry across the plasma membrane. Caspase-3 activation of pore-dead DT40 cells was also more sensitive to extracellular Ca(2+) chelation when compared with wild-type cells. STS-mediated release of cytochrome c into the cytosol and mitochondrial membrane potential depolarization could also be observed in DT40 cells lacking IP(3)Rs or containing the pore-dead mutant. We conclude that nonfunctional IP(3)Rs can sustain apoptosis in DT40 lymphocytes, because they facilitate Ca(2+) entry mechanisms across the plasma membrane. Although the intrinsic ion-channel function of IP(3)Rs is dispensable for apoptosis induced by STS, the C-terminal tail of IP(3)Rs appears to be essential, possibly reflecting key protein-protein interactions with this domain.  相似文献   

20.
Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号