首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives:

The plantaris tendon is increasingly recognised as an important factor in midportion Achilles tendinopathy. Its innervation pattern is completely unknown.

Methods:

Plantaris tendons (n=56) and associated peritendinous tissue from 46 patients with midportion Achilles tendinopathy and where the plantaris tendon was closely related to the Achilles tendon were evaluated. Morphological evaluations and stainings for nerve markers [general (PGP9.5), sensory (CGRP), sympathetic (TH)], glutamate NMDA receptor and Schwann cells (S-100β) were made.

Results:

A marked innervation, as evidenced by evaluation for PGP9.5 reactions, occurred in the peritendinous tissue located between the plantaris and Achilles tendons. It contained sensory and to some extent sympathetic and NMDAR1-positive axons. There was also an innervation in the zones of connective tissue within the plantaris tendons. Interestingly, some of the nerve fascicles showed a partial lack of axonal reactions.

Conclusion:

New information on the innervation patterns for the plantaris tendon in situations with midportion Achilles tendinopathy has here been obtained. The peritendinous tissue was found to be markedly innervated and there was also innervation within the plantaris tendon. Furthermore, axonal degeneration is likely to occur. Both features should be further taken into account when considering the relationship between the nervous system and tendinopathy.  相似文献   

2.
Diabetes mellitus is a risk factor for various types of tendon disorders. The mechanisms underlying diabetes associated tendinopathies remain unclear, but typically, systemic factors related to high blood glucose levels are thought to be causally involved. We hypothesize that tendon immanent cells might be directly involved in diabetic tendinopathy. We therefore analyzed human and rat tendons by immunohistochemistry, laser capture microdissection, and single cell PCR for pancreatic β-cell associated markers. Moreover, we examined the short term effects of a single injection of streptozotocin, a toxin for GLUT2 expressing cells, in rats on insulin expression of tendon cells, and on the biomechanical properties of Achilles tendons. Tendon cells, both in the perivascular area and in the dense collagenous tissue express insulin and Glut2 on both protein and mRNA levels. In addition, glucagon and PDX-1 are present in tendon cells. Intraperitoneal injection of streptozotocin caused a loss of insulin and insulin mRNA in rat Achilles tendons after only 5 days, accompanied by a 40% reduction of mechanical strength. In summary, a so far unrecognized, extrapancreatic, insulin-producing cell type, possibly playing a major role in the pathophysiology of diabetic tendinopathy is described. In view of these data, novel strategies in tendon repair may be considered. The potential of the described cells as a tool for treating diabetes needs to be addressed by further studies.  相似文献   

3.
Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons’ physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.Subject terms: Physiology, Cell biology  相似文献   

4.
Overuse Achilles tendinopathy is a common and challenging problem in sports medicine. Little is known about the etiology of this disorder, and the development of a good animal model for overuse tendinopathy is essential for advancing insight into the disease mechanisms. Our aim was to test a previously proposed rat model for Achilles tendon overuse. Ten adult male Sprague-Dawley rats ran on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 wk and were compared with 12 control rats. Histological, mechanical, and gene-expression changes were measured on the Achilles tendons after the intervention, and local tendon glucose-uptake was measured before and after the intervention with positron emission tomography. No differences were detected between runners and controls in tissue histology or in glucose uptake, indicating that tendon pathology was not induced. Greater tendon tissue modulus (P < 0.005) and failure stress/body weight (P < 0.02) in runners compared with controls further supported that tendons successfully adapted to uphill running. Several genes of interest were regulated after 12 wk of running. Expression of collagen III and insulin-like growth factor I was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-β1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading.  相似文献   

5.
6.
Tendinopathy is a common musculoskeletal system disorder in sports medicine, but regeneration ability of injury tendon is limited. Tendon stem cells (TSCs) have shown the definitive treatment evidence for tendinopathy and tendon injuries due to their tenogenesis capacity. Aspirin, as the representative of nonsteroidal anti-inflammatory drugs for its anti-inflammatory and analgestic actions, has been commonly used in treating tendinopathy in clinical, but the effect of aspirin on tenogenesis of TSCs is unclear. We hypothesized that aspirin could promote injury tendon healing through inducing TSCs tenogenesis. The aim of the present study is to make clear the effect of aspirin on TSC tenogenesis and tendon healing in tendinopathy, and thus provide new treatment evidence and strategy of aspirin for clinical practice. First, TSCs were treated with aspirin under tenogenic medium for 3, 7, and 14 days. Sirius Red staining was performed to observe the TSC differentiation. Furthermore, RNA sequencing was utilized to screen out different genes between the induction group and aspirin treatment group. Then, we identified the filtrated molecules and compared their effect on tenogenesis and related signaling pathway. At last, we constructed the tendinopathy model and compared biomechanical changes after aspirin intake. From the results, we found that aspirin promoted tenogenesis of TSCs. RNA sequencing showed that growth differentiation factor 6 (GDF6), GDF7, and GDF11 were upregulated in induction medium with the aspirin group compared with the induction medium group. GDF7 increased tenogenesis and activated Smad1/5 signaling. In addition, aspirin increased the expression of TNC, TNMD, and Scx and biomechanical properties of the injured tendon. In conclusion, aspirin promoted TSC tenogenesis and tendinopathy healing through GDF7/Smad1/5 signaling, and this provided new treatment evidence of aspirin for tendinopathy and tendon injuries.  相似文献   

7.
Mechanical stimuli play important roles in proliferation and differentiation of connective tissue cells, and development and homeostatic maintenance of tissues. However, excessive mechanical loading to a tissue can injure cells and disrupt the matrix, as occurs in tendinopathy. Tendinopathy is a common clinical problem in athletes and in many occupational settings due to overuse of the tendon. Moreover, interleukin (IL)-1β is generally considered to be a "bad" cytokine, activating NF-κb and cell death and inducing matrix metalloproteinase (MMPs 1, 2, 3) expression and matrix destruction. However, activated NF-κB can also drive a cell survival pathway. We have reported that cyclic strain induced tenocyte death in three-dimensional (3D) cultures, and IL-1β could promote cell survival under strain. Therefore, it was hypothesized that 1) cyclic strain could induce cell death in tenocytes as observed in pathologic tendons in vivo; 2) a gene expression profile indicative of tendinopathy could be identified; and 3) low-dose IL-1β could protect cells from strain-induced, tendinopathy-like changes. Human tenocytes were cultured in 3D type I collagen hydrogels and subjected to 3.5% elongation at 1 Hz for 1 h/day for up to 5 days with or without IL-1β. Real-time RT-PCR data showed that cyclic strain regulated the expression of tendinopathy marker genes in a manner similar to that found in pathological tendons from patients and that addition of IL-1β reversed the gene expression changes to control levels. Results of further studies showed that IL-1β may modulate cell survival through upregulating the expression of connexin 43, which is involved in the modulation of cell death/survival in a variety of cells and tissues. The elucidation of the mechanisms underlying strain-induced cell death and recovery from strain injury will facilitate our understanding of the pathogenesis of tendinopathy and may lead to the discovery of new molecular targets for early diagnosis and treatment of tendinopathy.  相似文献   

8.
Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.  相似文献   

9.
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.  相似文献   

10.
11.
Tendons are frequently affected by chronic pain or rupture. Many causative factors have been implicated in the pathology, which until relatively recently was under-researched and poorly understood. There is now a greater knowledge of the molecular basis of tendon disease. Most tendon pathology (tendinopathy) is associated with degeneration, which is thought to be an active, cell-mediated process involving increased turnover and remodelling of the tendon extracellular matrix. Degradation of the tendon matrix is mediated by a variety of metalloproteinase enzymes, including matrix metalloproteinases and 'aggrecanases'. Neuropeptides and other factors released by stimulated cells or nerve endings in or around the tendon might influence matrix turnover, and could provide novel targets for therapeutic intervention.  相似文献   

12.
IntroductionThe relationship between peripheral tissue characteristics and pain symptoms in soft tissue inflammation is poorly understood. The primary aim of this study was to determine immunohistochemical differences in tissue obtained from patients with persistent pain and patients who had become pain-free after surgical treatment for rotator cuff tendinopathy. The secondary aim was to investigate whether there would be differences in glutaminergic and inflammatory gene expression between disease-derived and healthy control cells in vitro.MethodsSupraspinatus tendon biopsies were obtained from nine patients with tendon pain before shoulder surgery and from nine further patients whose pain had resolved completely following shoulder surgery. Histological markers relating to the basic tendon characteristics, inflammation and glutaminergic signalling were quantified by immunohistochemical analysis. Gene expression of glutaminergic and inflammatory markers was determined in tenocyte explants derived from painful rotator cuff tendon tears in a separate cohort of patients and compared to that of explants from healthy control tendons. Dual labelling was performed to identify cell types expressing nociceptive neuromodulators.ResultsTendon samples from patients with persistent pain demonstrated increased levels of metabotropic glutamate receptor 2 (mGluR2), kainate receptor 1 (KA1), protein gene product 9.5 (PGP9.5), CD206 (macrophage marker) and CD45 (pan-leucocyte marker) versus pain-free controls (p <0.05). NMDAR1 co-localised with CD206-positive cells, whereas PGP9.5 and glutamate were predominantly expressed by resident tendon cells. These results were validated by in vitro increases in the expression of mGluR2, N-methyl-D-aspartate receptor (NMDAR1), KA1, CD45, CD206 and tumour necrosis factor alpha (TNF-α) genes (p <0.05) in disease-derived versus control cells.ConclusionsWe conclude that differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of shoulder pain in rotator cuff tendinopathy, and that disease-derived cells exhibit a distinctly different neuro-inflammatory gene expression profile to healthy control cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0691-5) contains supplementary material, which is available to authorized users.  相似文献   

13.
Several members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family have been identified as aggrecanases, whose substrates include versican, the principal large proteoglycan in the tendon extracellular matrix. We have characterized the expression of ADAMTS-4 in human Achilles tendon and tendon-derived cells. ADAMTS-4 mRNA levels were higher in ruptured tendon compared with normal tendon or chronic painful tendinopathy. In tissue extracts probed by Western blotting, mature ADAMTS-4 (68 kDa) was detected only in ruptured tendons, while processed ADAMTS-4 (53 kDa) was detected also in chronic painful tendinopathy and in normal tendon. In cultured Achilles tendon cells, transforming growth factor-β (TGF-β) stimulated ADAMTS-4 mRNA expression (typically 20-fold after 24 h), while interleukin-1 induced a smaller, shorter-term stimulation which synergised markedly with that induced by TGF-β. Increased levels of immunoreactive proteins consistent with mature and processed forms of ADAMTS-4 were detected in TGF-β-stimulated cells. ADAMTS-4 mRNA was expressed at higher levels by tendon cells in collagen gels than in monolayer cultures. In contrast, the expression of ADAMTS-1 and -5 mRNA was lower in collagen gels compared with monolayers, and these mRNA showed smaller or opposite responses to growth factors and cytokines compared with that of ADAMTS-4 mRNA. We conclude that both ADAMTS-4 mRNA and ADAMTS-4 protein processing may be differentially regulated in normal and damaged tendons and that both the matrix environment and growth factors such as TGF-β are potentially important factors controlling ADAMTS aggrecanase activities in tendon pathology.  相似文献   

14.
Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.  相似文献   

15.
Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration. H. Tempfer and A. Wagner have contributed equally to this paper.  相似文献   

16.
17.
18.

Background

Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics – the comprehensive study of protein composition - in tendon research.

Materials and Methods

We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue.

Results

We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro.

Conclusions

Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research.  相似文献   

19.
Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号