首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2'-amino-3'-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H(2)O(2) resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H(2)O(2) induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEK(CA)), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H(2)O(2) or by expression of MEK(CA). We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated downstream of ERK, an event that modulates its interaction with actin, may lead to further understanding of the role of this protein in regulating cellular functions associated with cytoskeletal remodeling.  相似文献   

2.
3.
Primary cortical neurones exposed to an oxidative insult in the form of hydrogen peroxide (H(2)O(2)) for 30 min showed a concentration-dependent increase in oxidative stress followed by a delayed NMDA receptor-dependent cell death measured 24 h later. Extracellular signal-regulated protein kinase (ERK1/2), c-jun N-terminal kinase (JNK) and the kinase Akt/PKB may regulate neuronal viability in response to oxidative insults. Using phospho-specific antibodies, a 15-min stimulation of neurones with H(2)O(2) (100 microm - 1 mm) produced a concentration-dependent phosphorylation of ERK1/2 and Akt/PKB that was partly dependent on extracellular Ca(2+) and phosphatidylinositol 3-kinase (PI3-K). Higher concentrations of H(2)O(2) (1 mm) also stimulated a phosphorylation of JNK which was totally dependent on extracellular Ca(2+) but not PI3-K. H(2)O(2)-induced phosphorylation of ERK1/2, Akt/PKB or JNK were unaffected by the NMDA channel blocker MK801. Blocking ERK1/2 activation with the upstream inhibitor U0126 (10 microm) enhanced H(2)O(2)-induced (100-300 microm range) neurotoxicity and inhibited H(2)O(2)-mediated phosphorylation of the cyclic AMP regulatory binding protein (CREB), suggesting that ERK1/2 signals to survival under these conditions. At higher concentrations (mm), H(2)O(2)-stimulated a phosphorylation of c-jun. It is likely, therefore, that subjecting neurones to moderate oxidative-stress recruits pro-survival signals to CREB but during severe oxidative stress pro-death signals through JNK and c-jun are dominant.  相似文献   

4.
Mitogen-activated protein kinases (MAPKs) play different regulatory roles in signaling oxidative stress-induced apoptosis in cardiac ventricular myocytes. The regulation and functional role of cross-talk between p38 MAPK and extracellular signal-regulated kinase (ERK) pathways were investigated in cardiac ventricular myocytes in the present study. We demonstrated that inhibition of p38 MAPK with SB-203580 and SB-239063 enhanced H(2)O(2)-stimulated ERK phosphorylation, whereas preactivation of p38 MAPK with sodium arsenite reduced H(2)O(2)-stimulated ERK phosphorylation. In addition, pretreatment of cells with the protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin increased basal and H(2)O(2)-stimulated ERK phosphorylation. We also found that PP2A coimmunoprecipitated with ERK and MAPK/ERK (MEK) in cardiac ventricular myocytes, and H(2)O(2) increased the ERK-associated PP2A activity that was blocked by inhibition of p38 MAPK. Finally, H(2)O(2)-induced apoptosis was attenuated by p38 MAPK or PP2A inhibition, whereas it was enhanced by MEK inhibition. Thus the present study demonstrated that p38 MAPK activation decreases H(2)O(2)-induced ERK activation through a PP2A-dependent mechanism in cardiac ventricular myocytes. This represents a novel cellular mechanism that allows for interaction of two opposing MAPK pathways and fine modulation of apoptosis during oxidative stress.  相似文献   

5.
In Jurkat T lymphocytes, hydrogen peroxide (H(2)O(2)) potentiates the phosphorylation level of extracellular signal-regulated kinase 1 and 2 (ERK1/2) caused by T cell receptor (TCR) stimulation with anti-CD3 and anti-CD28 or anti-CD3 alone. Submillimolar concentrations of H(2)O(2)-induced phosphorylation of ERK1/2 and MAP/ERK kinase 1 and 2 (MEK1/2) without antigenic stimulation. H(2)O(2) also induced the electrophoretic mobility shift of Lck from 56 to 60 kDa. The MEK inhibitor, PD98059 attenuated ERK1/2 and MEK1/2 phosphorylation, as well as the migration shift of Lck induced by H(2)O(2). The phospholipase C (PLC) inhibitor, U73122, and EGTA reduced the phosphorylation of both ERK1/2 and MEK1/2 induced by H(2)O(2). Interestingly, an increase of intracellular cAMP level with forskolin or 8-(4-chlorophenylthio)-cAMP augmented ERK1/2 phosphorylation by H(2)O(2), while inhibiting MEK1/2 phosphorylation by H(2)O(2). These results demonstrate an alternative pathway that results in augmentation of ERK1/2 phosphorylation without concomitant MEK1/2 phosphorylation in T cells.  相似文献   

6.
7.
Overexpression of catalase, but not manganese superoxide dismutase (MnSOD), inhibited glucose deprivation-induced cytotoxicity and c-Jun N-terminal kinase 1 (JNK1) activation in human prostate adenocarcinoma DU-145 cells. Suppression of JNK1 activation by catalase overexpression resulted from inhibition of apoptosis signal-regulating kinase 1 (ASK1) activation by preventing dissociation of thioredoxin (TRX) from ASK1. Overexpression of catalase also inhibited relocalization of Daxx from the nucleus to the cytoplasm as well as association of Daxx with ASK1 during glucose deprivation. Taken together, hydrogen peroxide (H(2)O(2)) rather than superoxide anion (O(2) (*-)) acts as a second messenger of metabolic oxidative stress to activate the ASK1-MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)-mitogen-activated protein kinase (MAPK) signal transduction pathway.  相似文献   

8.
9.
Previous studies from this laboratory have demonstrated a critical role of cytosolic phospholipase A2 (cPLA2) and arachidonic acid in angiotensin II (Ang II) AT2 receptor-mediated signal transduction in renal epithelium. In primary proximal tubular epithelial cells exposed to hydrogen peroxide (H2O2), both the selective cPLA2 inhibitors and the cPLA2 antisense oligonucleotides significantly attenuated H2O2-induced arachidonic acid liberation and activation of p38(SAPK), ERK1/2, and Akt1. This H2O2-induced kinase activation was significantly attenuated by a Src kinase inhibitor PP2, or by transient transfection of carboxyl-terminal Src kinase (CSK) that maintained Src in the dormant form. Under basal conditions, Src coimmunoprecipitated with epidermal growth factor receptor (EGFR), while H2O2 increased EGFR phosphorylation in the complex. We observed that inhibition of EGFR kinase activity with AG1478 significantly attenuated H2O2-induced p38(SAPK) and ERK1/2 activation, but did not inhibit Akt1 activation. Furthermore, it seems that p38(SAPK) is upstream of ERK1/2 and Akt1, since a p38(SAPK) inhibitor SB203580 significantly blocked H2O2-induced activation of ERK1/2 and Akt1. Interestingly, overexpression of the dominant-negative p38(SAPK) isoform alpha inhibited ERK1/2 but not Akt1 activation. Our observations demonstrate that in these nontransformed cells, activation of cPLA2 is a converging point for oxidative stress and Ang II, which share common downstream signaling mechanisms including Src and EGFR. In addition, p38(SAPK) provides a positive input to both growth and antiapoptotic signaling pathways induced by acute oxidative stress.  相似文献   

10.
11.
Myocardial ischemia/reperfusion is characterized by oxidative stress and induction of proinflammatory cytokines. Interleukin (IL)-18, a member of the IL-1 family, acts as a proinflammatory cytokine, and is induced during various immune and inflammatory disorders. Therefore, in the present study we investigated whether IL-18 expression is regulated by cytokines and oxidative stress in cardiomyocytes. TNF-alpha induced rapid and sustained activation of NF-kappaB whereas H(2)O(2) induced delayed and transient activation. Both TNF-alpha and H(2)O(2) induced IL-18 mRNA and precursor protein in cardiomyocytes, and IL-18 release into culture supernatants. However, only TNF-alpha led to sustained expression. Expression of IL-18Rbeta, but not alpha, was induced by both agonists. TNF-alpha and H(2)O(2) induced delayed expression of IL-18 BP. Pretreatment with PDTC attenuated TNF-alpha and H(2)O(2) induced IL-18 and IL-18Rbeta, but not basal expression of IL-18Ralpha. These results indicate that adult cardiomyocytes express IL-18 and its receptors, and proinflammatory cytokines and oxidative stress regulate their expression via activation of NF-kappaB. Presence of both ligand and receptors suggests IL-18 impacts myocardial biology through an autocrine pathway.  相似文献   

12.
13.
Macrophage migration inhibitory factor (MIF) is a 12.5 kD polypeptide that serves as a critical regulator of cell functions such as gene expression, proliferation or apoptosis. However, the signal transduction pathways through which MIF takes part in cellular regulation are only incompletely understood. MIF leads to CD74-dependent "sustained" activation of ERK1/2 MAPK, but MIF's role in "transient" ERK activation and the involved upstream pathways are unknown. Here we report that the transient ERK pathway was markedly activated by MIF. This effect involved the phosphorylation and activation of Raf-1, MEK, ERK, and Elk-1. Of note, rapid and transient ERK phosphorylation by MIF was measurable in MIF-deficient cells, suggesting that MIF acted in a non-autocrine fashion. Applying the inhibitor genistein, a tyrosine kinase (TPK) activity was identified as a critical upstream signalling event in MIF-induced transient ERK signalling. Experiments using the Src kinase inhibitor PP2 indicated that the involved TPK was a Src-type tyrosine kinase. A role for an upstream Src kinase was proven by applying Src-deficient cells which did not exhibit transient ERK activation upon treatment with MIF, but in which MIF-induced ERK signalling could be restored by re-expressing Src. Intriguingly, JAB1/CSN5, a signalosome component, cellular binding protein of MIF and regulator of cell proliferation and survival, had a marked, yet dual, effect on MIF-induced ERK signalling. JAB1 overexpression inhibited sustained, but not transient, ERK phosphorylation. By contrast, JAB1-knock-down by siRNA revealed that minimum JAB1 levels were necessary for transient activation of ERK by MIF. In conclusion, MIF rapidly and transiently activates the ERK pathway, an effect that has not been recognized previously. This signalling pathway involves the upstream activation of a Src-type kinase and is co-regulated by the cellular MIF binding protein JAB1/CSN5. Our study thus has unravelled a novel MIF-driven signalling pathway and an intricate regulatory system involving extra- and possibly intracellular MIF, and which likely critically participates in controlling cell proliferation and survival.  相似文献   

14.
Liu J  Wu LL  Li L  Zhang L  Song ZE 《Regulatory peptides》2005,127(1-3):11-18
Platelet-derived growth factor (PDGF) is a dimeric molecule consisting of disulfide-bonded A- and B-polypeptide chains. Homodimeric (PDGF-AA, PDGF-BB) as well as heterodimeric (PDGF-AB) isoforms exert their effects on target cells by binding with different specificities to two structurally related protein tyrosine kinase receptors, denoted alpha- and beta-receptors. PDGF stimulates growth in various cell types, but little is known about its effect on mammalian cardiomyocytes. Therefore, growth-promoting effect of PDGF on rat cardiomyocytes was investigated. Primary culture of neonatal rat ventricular myocytes was prepared and cellular growth was estimated by [3H]-leucine incorporation assay. Tyrosine-phosphorylated PDGF-beta receptor of cardiomyocytes was determined by immunoblotting analysis after immunoprecipitation. PDGF-beta receptor, extracellular signal-regulated kinase (ERK) 1/2 and phosphorylated ERK1/2 of cardiomyocytes were measured by immunoblotting analysis. [3H]-leucine incorporation into the cultured myocytes was increased in a time- and dose-dependent manner after PDGF-BB stimulation. Phosphorylation of PDGF-beta receptor and ERK1/2 in cardiomyocytes was increased after short-term stimulation of PDGF-BB. Protein expression of PDGF-beta receptor and ERK1/2 was increased after long-term stimulation of PDGF-BB. [(3)H]-leucine incorporation into the cultured myocytes induced by PDGF-BB was partly blocked by mitogen-activated ERK-activating kinase (MEK) inhibitor PD98059, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor staurosporin aglycone, respectively. Therefore, PDGF beta receptor, ERK1/2, PLC and PKC are involved in the signal transduction of PDGF-induced growth response of rat cardiac myocytes.  相似文献   

15.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

16.
Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation   总被引:7,自引:0,他引:7  
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.  相似文献   

17.
目的:探讨白藜芦醇(Res)是否通过下调ERK激酶/胞外信号调节激酶/原癌基因(MEK/ERK/c-Jun)信号通路抑制小剂量过氧化氢(H2O2)诱导肺癌细胞增殖。方法:采用MTS实验检测小剂量20μM H2O2以及分别加入MEK阻断剂U0126和Res后H2O2对肺癌细胞NCI-H1395增殖的影响,采用Western Blot检测H2O2对ERK1/2和Akt蛋白磷酸化水平以及加入Res后H2O2对MEK、ERK1/2和c-Jun蛋白磷酸化水平的影响。结果:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,H2O2通过活化ERK1/2和Akt蛋白的磷酸化水平促进肺癌细胞NCI-H1395增殖,加入MEK阻断剂U0126后H2O2对肺癌细胞NCI-H1395增殖作用降低(P<0.05)。Res可抑制H2O2诱导的肺癌细胞NCI-H1395增殖,加入Res后,H2O2引起的MEK、ERK1/2和c-Jun蛋白磷酸化水平均降低(P<0.05)。结论:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,Res通过抑制MEK/ERK/c-Jun信号通路来抑制H2O2对肺癌细胞NCI-H1395的促增殖作用,其具体机制还需进一步研究。  相似文献   

18.
Pyo JO  Nah J  Kim HJ  Lee HJ  Heo J  Lee H  Jung YK 《Autophagy》2008,4(3):315-321
Despite of the increasing evidence that oxidative stress may induce non-apoptotic cell death or autophagic cell death, the mechanism of this process is unclear. Here, we report a role and a down-stream molecular event of Atg5 during oxidative stress-induced cell death. Compared to wild type (WT) cells, Atg5-deficient mouse embryo fibroblasts (Atg5-/- MEFs) and Atg5 knockdown HT22 neuronal cells were more resistant to cell death induced by H2O2. On the contrary, Atg5-/- MEFs were as sensitive to tumor necrosis factor (TNF)-alpha and cycloheximide as WT cells, and were more sensitive to cell death triggered by amino acid-deprivation than WT MEFs. Treatment with H2O2 induced the recruitment of a GFP-LC3 fusion protein and conversion of LC3 I to LC3 II, correlated with the extent of autophagosome formation in WT cells, but much less in Atg5-deficient cells. Among stress kinases, ERK1/2 was markedly activated in Atg5-/- MEFs and Atg5 knockdown HT22 and SH-SY5Y neuronal cells. The inhibition of ERK1/2 by MEK1 inhibitor (PD98059) or dominant negative ERK2 enhanced the susceptibility of Atg5-/- MEFs to H2O2-induced cell death. Further, reconstitution of Atg5 sensitized Atg5-/- MEFs to H2O2 and suppressed the activation of ERK1/2. These results suggest that the inhibitory effect of Atg5 deficiency on cell death is attributable by the compensatory activation of ERK1/2 in Atg5-/- MEFs during oxidative stress-induced cell death.  相似文献   

19.
Van Kolen K  Slegers H 《The FEBS journal》2006,273(8):1843-1854
When nucleotide hydrolysis is prevented, agonists of the P2Y(12) receptor enhance the proliferation of C6 glioma cells by RhoA-dependent, protein kinase C (PKC)-dependent activation of the extracellular signal-regulated kinase (ERK) pathway [Claes P, Grobben B, Van Kolen K, Roymans D & Slegers H (2001) Br J Pharmacol134, 402-408; Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU & Slegers H (2001) J Neurochem78, 1325-1338]. In this study, we show that ERK1/2 phosphorylation was not affected by transfection of the cells with the Gbetagamma-subunit-scavenging adrenergic receptor kinase peptide [betaARK1-(495-689)] or with Rap1GAPII, indicating that P2Y(12) receptor stimulation enhances ERK1/2 phosphorylation by G(i)alpha subunit-mediated signaling independently of Rap1 activation. Inhibition of the RhoA downstream effector Rho-associated coiled-coil-containing kinase (ROCK) with Y-27632 did not affect the P2Y(12) receptor-induced increase in ERK1/2 phosphorylation but abrogated the mitogenic response. Involvement of growth factor receptor transactivation in the signaling towards ERK phosphorylation could be ruled out by the lack of an effect of PP2, AG1024, AG1296 or SU1498, inhibitors of Src, insulin-like growth factor receptor, platelet-derived growth factor receptor and vascular endothelial growth factor receptor kinase activity, respectively. Experiments with bisindolylmaleimide I and IX indicated the requirement of PKC activity. Classical and novel PKC isoforms could be excluded by treatment of the cells with G?6976 and calphostin C, whereas addition of a myristoylated PKCzeta pseudosubstrate inhibitor completely abolished P2Y(12) receptor-induced ERK1/2 activation. Moreover, coimmunoprecipitation experiments revealed PKCzeta/Raf1 and PKCzeta/ERK association, indicating the involvement of PKCzeta. From the data presented, we can conclude that the P2Y(12) receptor enhances cell proliferation by a G(i)alpha-dependent, RhoA-dependent PKCzeta/Raf1/MEK/ERK pathway that requires activation of ROCK, which is not involved in ERK1/2 signaling.  相似文献   

20.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号