首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
规律成簇的间隔短回文重复序列(CRISPR)及CRISPR相关蛋白9(CRISPR/Cas9)系统是一种新型基因组编辑技术,能够靶向干扰或修复基因组的特定基因.来自细菌或人工改造的CRISPR/Cas9系统已经由生物学家发现或构建,Cas9核酸酶及单链导向RNA(sgRNA)是CRISPR/Cas9系统的主要组成成分.该系统被广泛应用于疾病治疗新靶点的发掘,基因功能的鉴定,动物模型的建立以及基因治疗药物的开发.CRISPR/Cas9系统已经通过突变或修正疾病相关基因来部分缓解或彻底治愈某些病症.然而,如何有效递送CRISPR/Cas9至目标细胞及靶器官仍然是运用该技术所面临的挑战之一,这影响着该系统稳定和精准的基因编辑能力.本文主要综述Cas9mRNA,Cas9蛋白或编码Cas9基因及相应sgRNA载体的递送系统.递送Cas9蛋白的非病毒载体能够维持Cas9的靶向作用,减少脱靶效应;递送sgRNA和供体模板的病毒载体能够改进基因编辑及同源修复效率.安全,有效及可规模化生产的递送载体将会推进CRISPR/Cas9技术在人类基因治疗领域中的应用.  相似文献   

2.
新兴的CRISPR/Cas9基因编辑技术可实现在分子水平上对基因进行操作,具有设计简单、易于操作、特异性好、效率高等优点,广泛应用于肿瘤发生、发展和转移的潜在机制以及临床治疗的研究.利用纳米技术研发的非病毒纳米载体可以将CRISPR/Cas9系统高效递送到体内,为CRISPR/Cas9技术在临床领域的应用提供新途径.本文介绍CRISPR/Cas9的作用原理,简要概括目前CRISPR/Cas9系统的递送形式和常用的纳米递送载体,总结在部分肿瘤治疗中应用该技术的研究进展,并进一步对此进行展望.  相似文献   

3.
CRISPR/Cas9系统(常间回文重复序列丛集/常间回文重复序列丛集关联蛋白系统)为靶向基因编辑提供了强大的技术手段.利用序列特异性sgRNA的引导,CRISPR/Cas9系统能够精准地在目标DNA的确切位置导入双链切口.与已有的基因编辑手段相比,该系统具有更优异的简便性、特异性和有效性.目前,大量涉及体内外多物种的CRISPR/Cas9基因编辑研究已充分展示了该技术的巨大潜力,为基于该技术的疾病治疗研究和临床应用带来了希望.基于CRISPR/Cas9基因编辑技术所介导的非同源性末端连接和同源性DNA修复作用,近期多个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷.本综述将总结近期有关利用CRISPR/Cas9基因编辑技术治疗人类遗传性疾病的相关临床前研究进展.  相似文献   

4.
CRISPR/Cas9系统的发展彻底改变了人们编辑DNA序列和调控目标基因表达水平的能力,从而为生物体的精确基因组编辑提供了有力的工具。简化后的CRISPR/Cas9系统由两部分组成:Cas9蛋白和sgRNA。其作用原理为sgRNA通过自身的Cas9把手与Cas9蛋白形成Cas9-sgRNA复合体,Cas9-sgRNA复合体中sgRNA的碱基互补配对区序列与目标基因的靶序列通过碱基互补配对原则进行配对结合,Cas9利用自身的核酸内切酶活性对目标DNA序列进行切割。与传统的基因组编辑技术相比,CRISPR/Cas9系统具有几大明显的优势:易用性、简便性、低成本、可编程性以及可同时编辑多个基因。CRISPR/Cas9基因组编辑技术以及衍生出来的CRISPRi和CRISPRa基因表达调控技术已经广泛应用于多种真核和原核生物中。综述了CRISPR/Cas9系统的起源、作用机理、在生物体中的应用和其衍生出的技术,并概述了其脱靶效应和未来前景。  相似文献   

5.
随着对丝状真菌基因水平研究的不断深入,CRISPR/Cas9技术作为先进的基因编辑技术,已被广泛应用于丝状真菌的基因编辑。探究了CRISPR/Cas9系统在不同丝状真菌中的应用情况,主要从sgRNA的构建与表达、Cas9蛋白的改造与表达、不同的DNA双链断裂修复(DNA double-strand break,DSB)方式等方面进行概述,并对编辑效率、脱靶效应进行总结,旨在为今后丝状真菌中CRISPR/Cas9系统的构建及改良提供思路。  相似文献   

6.
郑武  谷峰 《遗传》2015,37(10):1003-1010
CRISPR/Cas9基因编辑技术在生命科学领域掀起了一场全新的技术革命,该技术可以对基因组特定位点进行靶向编辑,包括缺失、插入、修复等。CRISPR/Cas9比锌指核酸酶 (ZFNs)和转录激活因子样效应物核酸酶(TALENs)技术更易于操作,而且更高效。CRISPR/Cas9系统中的向导RNA(Single guide RNA, sgRNA)是一段与目标DNA片段匹配的RNA序列,指导Cas9蛋白对基因组进行识别。研究发现,设计的sgRNA会与非靶点DNA序列错配,引入非预期的基因突变,即脱靶效应(Off-target effects)。脱靶效应严重制约了CRISPR/Cas9基因编辑技术的广泛应用。为了避免脱靶效应,研究者对影响脱靶效应的因素进行了系统研究并提出了许多降低脱靶效应的方法。文章总结了CRISPR/Cas9系统的应用及脱靶效应研究进展,以期为相关领域的工作提供参考。  相似文献   

7.
CRISPR/Cas9的发现为多种生物的基因编辑提供了强有力的工具。然而,该系统在提供靶向性基因修饰的同时,会产生一些不需要的突变,即脱靶现象。为提高CRISPR/Cas9的特异性,我们将野生型FokI核酸内切酶的功能结构域与催化功能区失活的Cas9蛋白(dCas9)进行融合,形成融合蛋白用于降低脱靶效应。FokⅠ是一种依赖于二聚化才能行使内切酶活性的核酸酶,在本研究中,通过将FokⅠ功能结构融合到dCas9的N端,构建表达质粒pST1374-dCas9-FokⅠ。我们前期研究中,发现一个sgRNA在介导Cas9编辑Dnmt1基因建立条件敲除大鼠时,存在显著的脱靶现象。以此为基础,我们利用dCas9-FokⅠ/sgRNA系统编辑大鼠Dnmt1基因,研究该系统是否能够进行基因编辑以及是否能够提高基因编辑特异性。将转录好的dCas9-FokⅠ mRNA和sgRNA显微注射到SD大鼠的受精卵中,用于产生基因编辑大鼠。通过显微注射以及胚胎移植,最终获得43只F0代大鼠,其中两只在靶点位置包含突变,突变效率达4.5%。对脱靶情况进行分析,结果显示,无脱靶现象存在。综上,表明dCas9-FokⅠ/sgRNA可以应用于编辑大鼠基因,并能显著提高特异性。尽管dCas9-FokⅠ/sgRNA系统相比于Cas9/sgRNA系统,基因编辑效率有所下降,但是该技术的发展为基因治疗提供了可供选择的潜在工具。  相似文献   

8.
RNA介导的CRISPR/Cas9基因编辑系统由单链引导RNA(sgRNA)与核酸酶Cas9构成。在细胞内,sgRNA能够按照碱基互补配对的原则引导Cas9与靶点结合,由Cas9切割目标DNA,造成双链DNA断裂(double stranded break, DSB)。在随后的DNA修复过程中,细胞主要进行非同源末端连接(non-homologous end joining,NHEJ)或在有修复模板存在的情况下进行重组修复(homology directed repair, HDR)。如果将CRISPR/Cas9系统以及修复模板通过显微注射的方式导入大鼠的胚胎内,就能借助细胞的修复机制实现大鼠胚胎的基因编辑,由此构建各种基因修饰大鼠模型。本文详细介绍了利用CRISPR/Cas9基因编辑技术构建大鼠模型的具体操作步骤,以期为相关领域的科研人员提供一种大鼠基因修饰模型的构建方法。  相似文献   

9.
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated proteins)作为一种新型基因组编辑技术,为解释疾病的发生机制和治疗疾病提供了新方法。来自Ⅱ型原核CRISPR系统的CRISPR/Cas9能够通过单链向导RNA(single guide RNA, sgRNA)将Cas9核酸酶靶定到特定的基因组序列发挥作用。已经被成功用来进行基因编辑构建疾病模型,以进行相关领域的功能研究和疾病的治疗。CRISPR/Cas9技术正在迅速的应用于生物医学研究的各个领域,包括心血管领域,它促进了人们对电生理、心肌病、心律失常以及其他心血管疾病的更多了解,已经创建了靶向很多基因的细胞和动物模型,为新一类疗法打开了大门。本综述介绍了CRISPR/Cas9的作用原理、优点和局限性,以及在心血管疾病中的应用进展。  相似文献   

10.
CRISPR/Cas9技术自从出现以来便迅速应用于肿瘤研究。在肿瘤发生的机理研究中,CRISPR/Cas9可用于研究单核苷酸突变、染色体异位等因素在肿瘤发生中的作用机制,同时也可以用于肿瘤细胞中功能缺陷基因的筛选。在肿瘤治疗方法的研究中,CRISPR/Cas9主要用于诱发机制比较清晰且诱因为病毒的肿瘤类型,例如鼻咽癌、宫颈癌等,通过对相应病毒的基因进行编辑从而抑制其致癌作用。利用CRISPR/Cas9技术还可以加速新肿瘤治疗靶点基因的发现。尽管发展和应用十分迅速,但是CRISPR/Cas9在肿瘤研究和治疗中的作用仍然受多种因素的限制,包括Cas9和sgRNA的输送效率、脱靶效应以及安全性和成本等。对CRISPR/Cas9在肿瘤研究中的应用进展进行了综述,以期为肿瘤发生、转移机制和肿瘤治疗等方面的研究提供参考。  相似文献   

11.
The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5′ coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11, were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.  相似文献   

12.
13.
Dong  Zhanqi  Qin  Qi  Hu  Zhigang  Chen  Peng  Huang  Liang  Zhang  Xinling  Tian  Ting  Lu  Cheng  Pan  Minhui 《中国病毒学》2019,34(4):444-453
Recently the developed single guide(sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease(CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector(pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus(BmNPV) in insect cells.We screened the immediate-early-1 gene(ie-1), the major envelope glycoprotein gene(gp64), and the late expression factor gene(lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector(PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.  相似文献   

14.
The clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs(sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies.Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.  相似文献   

15.
16.
CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing.  相似文献   

17.
The Cas9/sgRNA of the CRISPR/Cas system has emerged as a robust technology for targeted gene editing in various organisms, including plants, where Cas9/sgRNA-mediated small deletions/insertions at single cleavage sites have been reported in transient and stable transformations, although genetic transmission of edits has been reported only in Arabidopsis and rice. Large chromosomal excision between two remote nuclease-targeted loci has been reported only in a few non-plant species. Here we report in rice Cas9/sgRNA-induced large chromosomal segment deletions, the inheritance of genome edits in multiple generations and construction of a set of facile vectors for high-efficiency, multiplex gene targeting. Four sugar efflux transporter genes were modified in rice at high efficiency; the most efficient system yielding 87–100% editing in T0 transgenic plants, all with di-allelic edits. Furthermore, genetic crosses segregating Cas9/sgRNA transgenes away from edited genes yielded several genome-edited but transgene-free rice plants. We also demonstrated proof-of-efficiency of Cas9/sgRNAs in producing large chromosomal deletions (115–245 kb) involving three different clusters of genes in rice protoplasts and verification of deletions of two clusters in regenerated T0 generation plants. Together, these data demonstrate the power of our Cas9/sgRNA platform for targeted gene/genome editing in rice and other crops, enabling both basic research and agricultural applications.  相似文献   

18.
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired‐sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired‐sgRNA cloning, our strategy only requires the synthesis of two gRNA‐containing primers which largely reduces the cost. We further compared efficiencies of paired‐sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA‐sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10‐fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired‐sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418‐resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.  相似文献   

19.
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号