首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shuji Hino 《Hydrobiologia》1992,230(3):179-192
Variations in physiological state and biomass of the phytoplankton community were examined in three different types of lakes, namely Lake Barato, Lake Akan, and Lake Shikaribetu. When the physiological state of the phytoplankton community was estimated by its adenylate energy charge (AEC), low biomass and low physiological state co-appeared gradually in the metalimnion and hypolimnion during stratification. The physiological state of the phytoplankton as estimated by its AEC value did not always correspond to its biomass, estimated by chlorophyll-a and ATP in these three lakes. A high physiological state of the community was usually observed in the euphotic zone, but the low AEC value observed in the euphotic zone of Lake Barato was not identified in the euphotic zones of the other lakes. Thus, the relationship between the value of AEC, and biomass of phytoplankton is a complex variable, which is further discussed in this paper.  相似文献   

2.
The ultraplanktonic green alga Monoraphidium contortum Korm. in Lake Tahoe (California-Nevada) demonstrated several ecological and physiological attributes of a genetically adapted shade species. Monoraphidium contortum achieved maximum biomass during deep mixing in winter when light availability was at a minimum. During stratification it was found in maximum abundance in the deep euphotic region, 100–150 m. This species was also distributed through the deep aphotic zone where, despite prolonged darkness, it remained capable of immediate photosynthesis when re-exposed to light levels in the euphotic zone. The spirally twisted cells were grazed by two calanoid copepods in Lake Tahoe as readily as much larger-celled phytoplankton species of less complex morphology. Slow growth rates in combination with high susceptibility to copepod grazing may effectively exclude M. contortum from the upper 75 m, where it was rarely recorded. In culture it showed a marked incapacity to adjust to ‘sun’ conditions but was well adapted to low light regimes. Under a wide range of irradiances, photochemical capacity, photosynthetic capacity and growth rates were low, but cellular pigment content remained high. The ratio of Pmax to respiration was at the lower end of the range for shade plants. Genetically distinct sun and shade populations of phytoplankton may play a determining role in major shifts of community structure over depth and time in Lake Tahoe.  相似文献   

3.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

4.
A. K. Rai 《Limnology》2000,1(1):33-46
Limnological characteristics were studied and analyzed in the subtropical Lakes Phewa, Begnas, and Rupa of Pokhara Valley, Nepal, from 1993 to 1997. The annual water temperature ranged from 12° to 29°C in all lakes. Lake Phewa and Lake Begnas were monomictic and anoxic in the hypolimnion during thermal stratification from April to September. Dissolved oxygen was drastically depleted in April and/or May in shallow Lake Rupa when the macrophyte community began to decompose. NH4 +-N accumulated below 5 m during March–September when dissolved oxygen was depleted in Lakes Phewa and Begnas. The PC : PP ratio was higher, but the PC : PN and PN : PP ratios were close to the Redfield ratio (106C : 16N : 1P) in Lakes Phewa and Begnas, denoting that P was limited. Annual net primary production showed that the lakes were productive but will tend to become heterotrophic in the future. The seasonal variation of chlorophyll a concentration was high, but its annual variation was low. Ceratium hirundinella and Peridinium spp. in Lake Phewa, Microcystis aeruginosa and Aulacoseira granulata in Lake Begnas, and Tabellaria fenestra in Lake Rupa were the dominant species. The zooplankton population and species varied irregularly. On the basis of chlorophyll a concentration in the euphotic zone and phytoplankton species composition, the lakes seem to be oligoeutrophic and to have some characteristics of temperate lakes rather than tropical lakes. Received: April 26, 1999 / Accepted: September 20, 1999  相似文献   

5.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

6.
By using autoradiographic examination of 14C labeled viable cells, natural phytoplankton communities were separated into living and non-living components. Comparisons of carbon to adenosine triphosphate (ATP) content of living cells yielded consistent ratios with depth, during periods of high and low nutrient supply at Lake Tahoe. Over time the ratio fluctuated by no more than ± 17% of the mean between the time of maximum nutrient supplies and nutrient depletion. The viability of specific phytoplankton groups was surprisingly low at times, indicating that conventional counting methods tend to overestimate live biomass. A survey of lakes differing in trophic states and having diverse phytoplankton and bacterial assemblages has shown that ATP measurements can be used as an accurate measure of total living microbial biomass.  相似文献   

7.
Vertical profiles of temperature, light and chlorophyll a concentration were examined in Lake Moreno Oeste, an oligotrophic South Andean lake (Argentina), during the warmest period of the year (November-April), when thermal stratification is characteristic. Concurrent samples for the enumeration of phytoplankton and green ciliates were taken, and the different contribution of these fractions to total chlorophyll a concentration was analysed. The development of a distinctive deep chlorophyll maximum was observed during summer months. The deep chlorophyll maximum was situated near the limit of the euphotic zone and just below the upper limit of the metalimnion. The results showed that the green ciliate Ophrydium naumanni with endosymbiotic Chlorella dominated the metalimnion causing the deep chlorophyll maximum. Additional laboratory experiments revealed a strong dependence of O.naumanni on light. Therefore, the symbiotic association appears to be an effective exploitation of the water column in poor-nutrient-high-light ecosystems like large Andean lakes.   相似文献   

8.
Lake Mburo and Lake Kachera are shallow, eutrophic lakes in mid‐western Uganda. Lake Mburo recorded higher values of Secchi and eutrophic depths and lower extinction coefficient (k) values. The lakes showed a ‘red shift’ phenomenon in maximum light transmission. The average values of electrical conductivity in Lake Mburo and Lake Kachera were 136 and 244 μS cm?1, respectively. The pH values indicated high photosynthetic activity. Dissolved oxygen concentration averaged 6.9 and 7.8 mg l?1 in Lake Mburo and Lake Kachera, respectively. The lakes had high total nitrogen (TN) : total phosphorus (TP) ratios averaging 200 and 280 in Lake Mburo and Lake Kachera, respectively. The lakes are dominated by cyanobacterial blooms that reduce light penetration to less than 1 m. Lake Mburo had a lower algal biomass than Lake Kachera. Chlorophyll a concentrations correlated positively (r = 0.73, P < 0.05) with the extinction coefficient in Lake Mburo but not in Lake Kachera. The correlations between chlorophyll a and TN and TP were also high. Both lakes recorded high primary productivity, Lake Mburo showing higher values. The study highlighted the need to investigate the organism–community interrelationships in the two water bodies.  相似文献   

9.
Nine lakes in northern Wisconsin were sampled from February through September 1996, and HPLC analysis of water column pigments was carried out on epilimnetic seston. Pigment distributions were evaluated throughout the water column during summer in Crystal Lake and Little Rock Lake. The purpose of our study was to investigate the use of phytopigments as markers of the main taxonomic groups of algae. As a first approach, multiple regression of marker pigments against chlorophyll a (chl a) was used to derive the best linear combination of the main xanthophylls (peridinin, fucoxanthin, alloxanthin, lutein, and zeaxanthin). A significant regression equation (r2= 0.98) was obtained for epilimnion data. The good fit indicates that the chl a:xanthophyll ratios were fairly constant in the epilimnion of the nine lakes over time. Chlorophyll a recalculated from the main xanthophylls in each sample showed good agreement with measured chl a in epilimnetic waters. A second approach used the CHEMTAX program to analyze the same data set. CHEMTAX provided estimates of chl a biomass for all algal classes and allowed distinction between diatoms and chrysophytes, and between chlorophytes and euglenophytes. These results showed a reasonably good agreement with biomass estimates from microscope counts, despite uncertainties associated with differences in sampling procedure. Changes of pigment ratios over time in the epilimnetic waters were also investigated, as well as differences between surface and deep samples of Little Rock Lake and Crystal Lake. We found evidence that changes in the ratio of photoprotective pigments to chl a occurred as a response to changes in light climate. Changes were also observed for certain light‐harvesting pigments. The comparison between multiple regression and CHEMTAX analyses for inferring chl a biomass from concentrations of marker pigments highlighted the need to take account of variations in pigment ratio, as well as the need to acquire additional data on the pigment composition of planktonic algae.  相似文献   

10.
Previous investigations on Sicilian man made lakes suggested that physical factors, along with the specific morphology and hydrology of the water body, are important in selecting phytoplankton species. In particular, the variations of the z mix/z eu ratio due to the operational procedure to which reservoirs are generally subject were recognised as a trigger allowing the assemblage shift. To investigate if these variations may be considered analogous to those occurring in natural lakes as trophic state and phytoplankton biomass increase, causing a transparency decrease and a contraction of the euphotic depth, phytoplankton were collected in two natural water bodies, one mesotrophic (Lake Biviere di Cesarò) the other eutrophic (Lake Soprano), and compared with those collected in two reservoirs with analogous trophic characteristics (Lake Rosamarina, mesotrophic and Lake Arancio, eutrophic). Particular attention was paid to the dynamics of two key groups: Cyanophytes and chlorophytes. In all four water bodies, transparency mainly depended on chlorophyll level. Annual average value of phytoplankton biomass in the mesotrophic environments was below 2.0 mg l–1, whereas in the eutrophic systems it was well above 10 mg l–1. All water bodies showed the presence of cyanophytes (e.g. Anabaena spp., Anabaenopsis spp., Microcystis spp., Planktothrix spp.) and chlorophytes (e.g. Chlamydomonas spp., Botryococcus spp., Oocystis spp., Scenedesmus spp., Pediastrum spp.), but their relative proportions and body size dimensions were different. In particular, small colonial chlorophytes and large-colony forming cyanophytes were most common in the most eutrophic water bodies, whereas larger colonies of green algae in those with a lower trophic state. The results showed that, under the same climatic conditions, autogenic (increase of biomass, decrease in light penetration and euphotic depth) and allogenic (use of the stored waters, anticipated breaking of the thermocline, increase of the mixing depth) processes may shift the structure of phytoplankton assemblage in the same direction even though the quantity of biomass remains linked to nutrient availability.  相似文献   

11.
Instrumentation measuring hyperspectral particle attenuation and absorption was used to assess particle concentration and size, chlorophyll, and spectral characteristics as a function of depth in four temperate lakes of different trophy. Partitioning the absorption coefficient permitted us to analyze properties of phytoplankton absorption as a function of ambient illumination and hydrographic conditions. Stratification was found to be a controlling factor in the size distribution and concentration of particles. Bloom cycles (chlorophyll > 10 mg m?3) were observed to evolve over several weeks but on occasion did change rapidly. Total chlorophyll concentration revealed the majority of the lakes did not follow the typical seasonal succession of biomass associated with temperate waters. Particle and chlorophyll concentration maxima did not always coincide, cautioning the use of chlorophyll a as a surrogate for algal biomass. Phytoplankton near the base of the euphotic zone, including a deep chlorophyll maximum in an oligotrophic system, were found to exhibit significant chromatic adaptation. Unique absorption peaks identified the ubiquitous presence of cyanobacteria in all four lakes. Finally, particle resuspension and possible nepheloid layers were observed in the two smallest lakes.  相似文献   

12.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

13.
1. Canonical correspondence analysis of a diatom and water chemistry dataset from fifty-nine maritime Antarctic lakes situated on Signy and Livingston Islands showed that nutrients and functions of nutrients (NH4+, chlorophyll a) accounted for a significant fraction of the variance in the diatom data. 2. Weighted averaging regression was used to construct a diatom-based transfer function for inferring chlorophyll a concentrations from sediment core diatom assemblages. 3. The transfer function was applied to 210Pb-dated sediment cores from three lakes (Moss, Sombre and Heywood) receiving different levels of nutrient input from fur seal populations, i.e. low, medium and high, respectively. 4. Moss Lake showed relatively stable reconstructed chlorophyll a values, and no evidence of recent eutrophication, agreeing with measured chlorophyll a concentrations at the site. 5. Changes in diatom assemblages and results of chlorophyll a reconstructions at Sombre Lake suggested that nutrient enrichment had occurred, which could be clearly linked to fluctuations in the measured water chemistry over the last 10–14 years. 6. Despite recorded increases in recent nutrient inputs there was no apparent diatom response at Heywood Lake.  相似文献   

14.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

15.
16.
In order to adequately assess the ecological status of thermally stratified lakes based on chlorophyll, the sampling must cover all productive layers of the water column. Missing the deep chlorophyll maxima (DCM) that often occur in the meta- or hypolimnion of transparent lakes supported by sufficient illumination and good nutrient availability may cause serious underestimation of the productivity and lead to misclassification of the lake ecological status. There is no commonly accepted sampling design for stratified lakes, and various monitoring guides suggest controversial designs. Our aim was to find some robust criteria to assess the probability of occurrence of a DCM and estimate the differences in measured mean chlorophyll concentrations caused by various sampling designs. Our theoretical model showed that the probability of occurrence of a DCM increases with increasing water transparency and decreasing lake size. Empirical data from Italian and Estonian stratified lakes confirmed the results. Testing of different sampling designs on lakes with full measured chlorophyll profiles available showed that taking only surface layer samples will lead with a high probability to an underestimation of the chlorophyll concentration in the trophogenic layer. In order not to miss the Chl peak in stratified lakes, in most cases it would be more precautious not to limit the sampling to the well-mixed epilimnion but to extend it to the whole euphotic layer. Sampling the epilimnion instead of the euphotic zone could cause up to a 70% underestimation of the chlorophyll concentration, an error that would cause a misclassification of the lake by one or even two status classes in a 5-class assessment system. In most cases, the 2.5 * Secchi depths proved a suitable criterion of the sampling depth and only in the case of surface scums, would sampling of a 3 * Secchi depth layer be recommended in order not to miss the deep chlorophyll maximum.  相似文献   

17.
18.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

19.
A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite different mainly because both mean depth and maximum depth of lakes differ as well as their salinity levels differ. The chemocline of the Lake Shira, as in many meromictic lakes, is inhabited by bacterial community consisting of purple sulphur and heterotrophic bacteria. As the depth of the chemocline is variable, the bacterial community does not attain high densities. The mixolimnion in Lake Shira, which is thermally stratified in summer, also creates different habitat for various species. The distribution of phytoplankton is non-uniform with its biomass peak in the metalimnion. The distribution of zooplankton is also heterogeneous with rotifers and juvenile copepods inhabiting the warmer epilimnion and older copepods found in the cold but oxic hypolimnion. The amphipod Gammarus lacustris which can be assigned to the higher trophic link in the fishless lake’s ecosystem, such as Lake Shira, is also distributed non-uniformly, with its peak density generally observed in the thermocline region. The chemocline in Lake Shunet is located at the depth of 5 m, and unlike in Lake Shira, due to a sharp salinity gradient between the mixolimnion and monimolimnion, this depth is very stable. The mixolimnion in Lake Shunet is relatively shallow and the chemocline is inhabited by (1) an extremely dense bacterial community; (2) a population of Cryptomonas sp.; and (3) ciliate community comprising several species. As the mixolimnion of Lake Shunet is not thermally stratified for long period, the phytoplankton and zooplankton populations are not vertically stratified. The gammarids, however, tend to concentrate in a narrow layer located 1–2 m above the chemocline. We believe that in addition to vertical inhomogeneities of both physicochemical parameters, biological and physical factors also play a role in maintaining these inhomogeneities. We conclude that the stratified distributions of the major food web components will have several implications for ecosystem structure and dynamics. Trophic interactions as well as mass and energy flows can be significantly impacted by such heterogeneous distributions. Species spatially separated even by relatively short distances, say a few centimetres will not directly compete. Importantly, we demonstrate that not only bacteria, phytoflagellates and ciliate tend to concentrate in thin layers but also larger-sized species such Gammarus (amphipods) can also under certain environmental conditions have stratified distribution with maxima in relatively thin layer. As the vertical structure of the lake ecosystem is rather complex in such stratified lakes as ours, the strategy of research, including sampling techniques, should consider potentially variable and non-homogeneous distributions.  相似文献   

20.
Classification of waters using biological quality elements and determination of the degree of deviation from reference levels is a key issue in the Water Framework Directive of EU. Lakes in reference conditions with sufficient biological data are available for several boreal lake types with the exception of naturally eutrophic lakes. An empirical approach is one alternative for estimating the reference conditions of such lakes. We used the water transparency of the naturally eutrophic Lake Tuusulanjärvi recorded in August in the early 1910s to estimate reference values for phytoplankton biomass and chlorophyll a concentrations. Three phytoplankton samples during August 2000–2001 corresponded to the estimated reference values for total biomass (<5.6 mg l?1) and chlorophyll a (<28 μg l?1), as did the simultaneous Secchi depths. The phytoplankton assemblage in these samples with 24 eutrophy indicators (17% of the total taxa number) corresponded in general the species list from the early 1900s, which as such could be regarded as reference assemblage. Furthermore, in August 2000, 3 years after intensive fish removal a prominent decrease in cyanobacterial biomass and toxin concentration was observed. The costs of the measures and studies in Lake Tuusulanjärvi during 1989–2003 have been approximately 2.5 million euros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号