首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to examine the relationship between the lateral tegmental field (FTL), a cardioinhibitory area, with other cardioinhibitory areas, i.e., the ambiguus nucleus (NA) and the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), a vasopressor inhibitory area. In 55 cats anesthetized with chloralose (40 mg/kg) and urethane (400 mg/kg), the cardiovascular responses of heart rate (HR), systemic arterial blood pressure (SAP) and vertebral nerve activity (VNA) were recorded. The FTL, NA, DMV and CVLM were identified first by stimulation (rectangular pulses in 80 Hz, 0.5 ms, 50-100 microA) and then confirmed by microinjection of sodium glutamate (Glu, 0.25M, 70 nl). In studying the influence of NA, DMV, or CVLM lesion on the Gluinduced responses in FTL, kainic acid (KA, 24 mM, 100 nl) was microinjected into the NA, DMV or CVLM. FTL stimulation produced an average decrease of HR by 55%. After KA lesioning of the ipsilateral NA or the DMV, the decreased HR induced by FTL was significantly diminished. After subsequent lesion of the contralateral DMV or NA, the bradycardia of FTL was abolished. The reduction of resting HR was more intense after lesioning the NA than DMV and with the left side more than that of the right side. These studies suggest that the cardioinhibitory responses of FTL are mediated through both NA and DMV with predominance of the former, while the hypotensive effect of FTL is mediated through CVLM. The precise pathway responsible for the FTL-induced bradycardia and hypotension is to be determined.  相似文献   

2.
A stimulation of the gigantocellular tegmental field (FTG) in the medulla oblongata often increases systemic arterial blood pressure (SAP) and decreases heart rate (HR). We investigated if the cardioinhibitory/depressor areas, including the nucleus ambiguus (NA), the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), underlied the functional expression of FTG neurons in regulating cardiovascular responses. In 73 chloralose-urethane anesthetized cats, the HR, SAP and vertebral nerve activity (VNA) were recorded. Neurons in the FTG, NA, DMV and CVLM were stimulated by microinjection of sodium glutamate (25 mM Glu, 70 nl). To study if the NA, DMV, and CVLM relayed the cardioinhibitory messages from the FTG, 24 mM kainic acid (KA, 100 nl) was used as an excitotoxic agent to lesion neurons in the NA, DMV or CVLM. We found that the cardioinhibition induced by FTG stimulation was significantly reduced by KA lesioning of the ipsilateral NA or DMV. Subsequently, a bilateral KA lesion of NA or DMV abolished the cardioinhibitory responses of FTG. Compared to the consequence of KA lesion of the DMV, only a smaller bradycardia was induced by FTG stimulation after KA lesion of the NA. The pressor response induced by Glu stimulation of the FTG was reduced by the KA lesion of the CVLM. Such an effect was dominant ipsilaterally. Our findings suggested that both NA and DMV mediated the cardioinhibitory responses of FTG. The pressor message from the FTG neurons might be partly working via a disinhibitory mechanism through the depressor neurons located in the CVLM.  相似文献   

3.
A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.  相似文献   

4.
The dorsal motor nucleus of the vagus (DMV) is pivotal in the regulation of upper gastrointestinal functions, including motility and both gastric and pancreatic secretion. DMV neurons receive robust GABA- and glutamatergic inputs. Microinjection of the GABA(A) antagonist bicuculline (BIC) into the DMV increases pancreatic secretion and gastric motility, whereas the glutamatergic antagonist kynurenic acid (KYN) is ineffective unless preceded by microinjection of BIC. We used whole cell patch-clamp recordings with the aim of unveiling the brain stem neurocircuitry that uses tonic GABA- and glutamatergic synapses to control the activity of DMV neurons in a brain stem slice preparation. Perfusion with BIC altered the firing frequency of 71% of DMV neurons, increasing firing frequency in 80% of the responsive neurons and decreasing firing frequency in 20%. Addition of KYN to the perfusate either decreased (52%) or increased (25%) the firing frequency of BIC-sensitive neurons. When KYN was applied first, the firing rate was decreased in 43% and increased in 21% of the neurons; further perfusion with BIC had no additional effect in the majority of neurons. Our results indicate that there are several permutations in the arrangements of GABA- and glutamatergic inputs controlling the activity of DMV neurons. Our data support the concept of brain stem neuronal circuitry that may be wired in a finely tuned organ- or function-specific manner that permits precise and discrete modulation of the vagal motor output to the gastrointestinal tract.  相似文献   

5.
Quantitative analysis of innervation to dorsal motor nucleus of the vagus (DMV) fundus-projecting neurons indicates that approximately 17% of input neurons are noradrenergic. To determine whether this small percentage of neurons innervating DMV output to the stomach is physiologically relevant, we evaluated the role of norepinephrine at the DMV in mediating a vagovagal reflex controlling the fundus. A strain gauge was sutured onto the fundus of isoflurane-anesthetized rats to monitor changes in tone evoked by esophageal distension (ED). ED produced a decrease in fundus tone of 0.31 +/- 0.02 g (P < 0.05), which could be reproduced after a 30-min interval between distensions. Bilateral cervical vagotomy and/or pretreatment with intravenous atropine methylbromide prevented the reflex-induced fundus relaxation. In contrast, intravenous N(G)-nitro-L-arginine methyl ester had no effect. Bilateral microinjection of alpha2-adrenoreceptor antagonists (yohimbine and RS-79948) into the DMV also prevented the response. Before microinjection of alpha2-adrenoreceptor antagonists, ED decreased fundus tone by 0.33 +/- 0.05 g (P < 0.05). After antagonist microinjection, ED decreased fundus tone by only 0.05 +/- 0.06 g (P > 0.05). Bilateral microinjection of prazosin into the DMV had no effect on the response. Microinjection of norepinephrine into the DMV mimicked the effect of ED and was also prevented by prior microinjection of an alpha2-adrenoreceptor antagonist. Our results indicate that noradrenergic innervation of DMV fundus-projecting neurons is physiologically important and suggest that norepinephrine released at the DMV acts on alpha2-adrenoreceptors to inhibit activity in a cholinergic-cholinergic excitatory pathway to the fundus.  相似文献   

6.
The dorsal motor nucleus of the vagus (DMV) contains preganglionic neurons that control gastric motility and secretion. Stimulation of different parts of the DMV results in a decrease or an increase in gastric motor activities, suggesting a spatial organization of vagal preganglionic neurons in the DMV. Little is known about how these preganglionic neurons in the DMV synapse with different groups of intragastric motor neurons to mediate contraction or relaxation of the stomach. We used pharmacological and immunohistochemical methods to characterize intragastric neural pathways involved in mediating gastric contraction and relaxation in rats. Microinjections of L-glutamate (L-Glu) into the rostral or caudal DMV produced gastric contraction and relaxation, respectively, in a dose-related manner. Intravenous infusion of hexamethonium blocked these actions, suggesting mediation via preganglionic cholinergic pathways. Atropine inhibited gastric contraction by 85.5 +/- 4.5%. Gastric relaxation was reduced by intravenous administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 52.5 +/- 11.9%) or VIP antagonist (56.3 +/- 14.9%). Combined administration of L-NAME and VIP antagonist inhibited gastric relaxation evoked by L-Glu (87.8 +/- 4.3%). Immunohistochemical studies demonstrated choline acetyltransferase immunoreactivity in response to L-Glu microinjection into the rostral DMV in 88% of c-Fos-positive intragastric myenteric neurons. Microinjection of L-Glu into the caudal DMV evoked expression of nitric oxide (NO) synthase and VIP immunoreactivity in 81 and 39%, respectively, of all c-Fos-positive intragastric myenteric neurons. These data indicate spatial organization of the DMV. Depending on the location, microinjection of L-Glu into the DMV may stimulate intragastric myenteric cholinergic neurons or NO/VIP neurons to mediate gastric contraction and relaxation.  相似文献   

7.
The present study was to investigate the localization of preganglionic parasympathetic neurons of gallbladder in brain stem by anatomical and functional approaches. Male or female rabbits (n = 11) were anesthetized with sodium pentobarbital (30 mg/kg, i.v.). Cholera toxin B conjugated to horseradish peroxidase (CB-HRP) was injected into the gallbladder wall. Four days later, animals were re-anesthetized and perfused transcardially with paraformaldehyde solution in a 0.1 M phosphate buffer. The rabbit brain was then frozenly sectioned. The sections were processed for HRP label and stained with neutral red. Another group of rabbits (n = 54) were anesthetized by urethane (1 g/kg) after fasting for 18-24 hours, Gallbladder pressure (GP) was measured by inserting a frog bladder filled with normal saline into the gallbladder. Myoelectrical activity of the sphincter of Oddi (SO) was induced by a pair of copper electrodes. A glass tube (30 microm tip diameter) connected with a microsyringe was directed to the dorsal vagal complex (DVC) for microinjection. Majority of retrogradely labeled cells was found bilaterally in dorsal motor nucleus of the vagus nerve (DMV) throughout the length, except the rostral and caudal part. These cells were distributed in subnuclei parvicellularis or mediocellularis of DMV. Some labeled perikarya located in the medial subnucleus of the solitary tract (mNTS). Thyrotropin-releasing hormone (TRH, 1.3 mmol/L, 0.2 microl) microinjected into the rostral portion of the DVC (including DMV and NTS) enhanced the motility of gallbladder and SO. Microinjection of TRH at the middle part of DVC seldom induces excitatory effects on the gallbladder or SO. TRH microinjected into the caudal portion of the DVC elicited weaker response of gallbladder and SO than rostral portion. Our results indicated that DMV is one of the most important original nuclei of gallbladder's vagus nerves and mNTS may be also involved in the control of gallbladder's parasympathetic activity. Neurons that innervate the gallbladder distribute at most part of DVC, and are relatively dense at rostral and caudal position of DMV.  相似文献   

8.
目的:探讨蓝斑(LC)、中缝大核(NRM)和迷走神经背核(DMV),及其相关递质和受体对胃运动的调节途径及机制,阐明它们在调节胃运动中的相互关系。方法:实验采用了核团定位电刺激、损毁和核团微量注射等实验方法,以记录胃内压,统计胃收缩幅度作为胃运动变化的指标。结果:①刺激LC显著降低胃收缩幅度(P〈0.01),损毁DMV可以减弱此效应,而阻断DMV上的肾上腺素能α受体,可以反转此抑胃效应。②刺激NRM显著降低胃收缩幅度(P〈0.01),损毁DMV后此效应被消除;阻断DMV上的5-HT2A受体使胃收缩幅度大幅度降低(P〈0.01),此时再刺激NRM不能进一步的抑制胃运动;而损毁LC后刺激NRM,可消除NRM的抑胃效应,在LC注射5-HT2A受体阻断剂也可以消除该效应。结论:①LC可能通过DMV的5-HT2A受体和α受体对生理条件下正常胃的运动起着重要的双向调节作用;②NRM通过LC上的5-HT2A受体而发挥其对胃运动的抑制效应。  相似文献   

9.
R B Lynn  H S Feng  J Han  F P Brooks 《Life sciences》1991,48(13):1247-1254
We investigated the gastric acid secretory and motility responses to microinjection of thyrotropin-releasing hormone (TRH) into the dorsal motor nucleus of the vagus (DMV) in anesthetized cats. Gastric acid output was collected every 15 min through a gastric cannula after saline flush and titrated to pH 7.0. Antral and corpus contractions were continuously recorded by extraluminal force transducers. TRH dissolved in 200 nl of saline and microinjected unilaterally into the DMV induced a dose-dependent (50-200 ng) increase in gastric acid secretion. The acid secretory response began in the first 15 min collection and lasted 45 min. TRH frequently increased the force of contractions of the antrum and corpus within one minute of microinjection. The minimal effective dose for eliciting increased motility was lower than for inducing acid secretion. These results demonstrate that TRH acts in the DMV of cats to stimulate gastric acid secretion and contractions.  相似文献   

10.
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited similar tachycardic (+51 and +45 beats/min, respectively) and pressor (+16 and +9 mmHg, respectively) responses in conscious rabbits. Bilateral microinjection of GABA(A) agonist muscimol (500 pmol) into the DMH, but not nearby hypothalamic regions, attenuated pressor and tachycardic responses to air-jet by 56-63% and evoked anorexia. Conversely, stimulation of the DMH with the glutamate analog kainic acid (250 pmol) elicited hypertension (+25 mmHg) and tachycardia (+114 beats/min) and activated feeding behavior. Local microinjection of a glutamate receptor antagonist, kynurenic acid (10 nmol), decreased pressor responses to stress and eating by 46 and 72%, respectively, without affecting feeding behavior. Bilateral microinjection of a selective AT(1)-receptor antagonist, candesartan (500 pmol), into the DMH, but not nearby sites, attenuated pressor and tachycardic stress responses by 31 and 33%, respectively. Candesartan did not alter feeding behavior or circulatory response to feeding. These results indicate that, in addition to its role in mediating stress responses, the DMH may be important in regulating cardiovascular arousal associated with feeding. Local glutamatergic inputs appear to regulate cardiovascular response to both stress and feeding. Conversely, angiotensin II, acting via AT1 receptors, may selectively modulate, in the DMH, cardiovascular response to stress, but not feeding.  相似文献   

11.
Ischemic stimulation of cardiac receptors evokes excitatory sympathetic reflexes. Although the nucleus of the solitary tract (NTS) is an important site for integration of visceral afferents, its involvement in the cardiac-renal sympathetic reflex remains to be fully defined. This study examined the role of glutamate receptor subtypes in the commissural NTS in the sympathetic responses to stimulation of cardiac receptors. Renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats. Cardiac receptors were stimulated by epicardial application of bradykinin (BK; 10 microg/ml). Application of BK significantly increased the mean arterial pressure from 78.2 +/- 2.2 to 97.5 +/- 2.9 mmHg and augmented RSNA by 38.5 +/- 2.5% (P < 0.05). Bilateral microinjection of 10 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) antagonist, into the commissural NTS eliminated the pressor and RSNA responses to BK application in 10 rats. However, microinjection of 2-amino-5-phosphonopentanoic acid (0.1 and 1 nmol, n = 8), an NMDA- receptor antagonist, or alpha-methyl-4-carboxyphenylglycine (0.1 and 1 nmol, n = 5), a glutamate metabotropic receptor antagonist, failed to attenuate significantly the pressor and RSNA responses to stimulation of cardiac receptors with BK. Thus this study suggests that non-NMDA, but not NMDA and glutamate metabotropic, receptors in the commissural NTS play an important role in the sympathoexcitatory reflex response to activation of cardiac receptors during myocardial ischemia.  相似文献   

12.
Glutamate stimulation of the caudal midline medulla (CMM) causes profound sympathoinhibition due to GABAergic inhibition of presympathetic neurons in the rostral ventrolateral medulla (RVLM). We investigated whether the sympathoinhibitory pathway from CMM to RVLM, like the central baroreceptor reflex pathway, includes a glutamatergic synapse in the caudal ventrolateral medulla (CVLM). In pentobarbital sodium-anesthetized rats, the RVLM on one side was inhibited by a muscimol microinjection. Then the response evoked by glutamate microinjections into the CMM or by baroreceptor stimulation was determined before and after 1) microinjection of the GABA receptor antagonist bicuculline into the RVLM on the other side or 2) microinjections of the glutamate receptor antagonist kynurenate bilaterally into the CVLM. Bicuculline in the RVLM greatly reduced both CMM- and baroreceptor-evoked sympathoinhibition. Compared with the effect of vehicle solution, kynurenate in the CVLM greatly reduced baroreceptor-evoked sympathoinhibition, whereas its effect on CMM-evoked sympathoinhibition was not different from that of the vehicle solution. These findings indicate that the output pathway from CMM sympathoinhibitory neurons, unlike the baroreceptor and other reflex sympathoinhibitory pathways, does not include a glutamatergic synapse in the CVLM.  相似文献   

13.
Activation of ATP P(2x) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of alpha,beta-methylene ATP (alpha,beta-MeATP) elicits fast initial depressor and sympathoinhibitory responses that are followed by slow, long-lasting inhibitory effects. Activation of NTS adenosine A(2a) receptors via microinjection of CGS-21680 elicits slow, long-lasting decreases in arterial pressure and renal sympathetic nerve activity (RSNA) and an increase in preganglionic adrenal sympathetic nerve activity (pre-ASNA). Both P(2x) and A(2a) receptors may operate via modulation of glutamate release from central neurons. We investigated whether intact glutamatergic transmission is necessary to mediate the responses to NTS P(2x) and A(2a) receptor stimulation. The hemodynamic and neural (RSNA and pre-ASNA) responses to microinjections of alpha,beta-MeATP (25 pmol/50 nl) and CGS-21680 (20 pmol/50 nl) were compared before and after pretreatment with kynurenate sodium (KYN; 4.4 nmol/100 nl) in chloralose-urethan-anesthetized male Sprague-Dawley rats. KYN virtually abolished the fast responses to alpha,beta-MeATP and tended to enhance the slow component of the neural responses. The depressor responses to CGS-21680 were mostly preserved after pretreatment with KYN, although the increase in pre-ASNA was reduced by one-half following the glutamatergic blockade. We conclude that the fast responses to stimulation of NTS P(2x) receptors are mediated via glutamatergic ionotropic mechanisms, whereas the slow responses to stimulation of NTS P(2x) and A(2a) receptors are mediated mostly via other neuromodulatory mechanisms.  相似文献   

14.
中缝隐核对兔奥迪氏括约肌肌电活动的影响   总被引:1,自引:0,他引:1  
Xie YF  Liu JZ  Liu CY 《生理学报》2001,53(3):215-218
实验用电生理学和微量注射法观察了兔中缝隐核(NRO)对奥迪氏括约肌肌电活动的影响,动物禁食但自由饭水,18-24h手用乌拉坦(1.0g/kg)静脉麻醉,用双极康铜丝电极引导奥迪氏括约肌肌电,发现NRO内微注射谷氨酸(340mmol/L,0.4ul)可使奥迪氏括约肌肌电活动加强,与在NRO内微量注射生理盐水或者将谷氨酸(340mmol/L,0.4ul)注射到NRO以外的地方相比,具有显著差异(P<0.01),NRO 微量注射N-methy-D-aspartate(NM-DA)受体阻断剂氯胺酮(180mmol/L,0.1ul),可消除谷氨酸的效应,而将微量非NMDA受体阻断剂CNQX(2mmol/L,0.1ul)注入NRO,可使奥迪氏括约肌肌电加强,外周应用M-受体阻断剂阿托品(0.2mg/kg)或双侧颈部迷走神经切断,可阻断微量谷氨酸注射到NRO内所引起的效应,静脉注射α-受体阻断剂酚妥拉明(1.5mg/kg),心得安(1.5mg/kg)或自T3-4处切断脊髓,对NRO内微量注射谷氨酸的效应没有影响,结果提示,NRO对奥迪氏括约肌运行有调节作用,其中谷氨酸主要通过NMDA受体兴雷奥迪氏括约肌肌电活动,其传出途径是迷走神经和外周M受体。  相似文献   

15.
The rostral ventrolateral medulla (rVLM) is involved in processing visceral sympathetic reflexes. However, there is little information on specific neurotransmitters in this brain stem region involved in this reflex. The present study investigated the importance of glutamate and glutamatergic receptors in the rVLM during gallbladder stimulation with bradykinin (BK), because glutamate is thought to function as an excitatory neurotransmitter in this region. Stimulation of visceral afferents activated glutamatergic neurons in the rVLM, as noted by double-labeling with c-Fos and the cellular vesicular glutamate transporter 3 (VGLUT3). Visceral reflex activation significantly increased arterial blood pressure as well as extracellular glutamate concentrations in the rVLM as determined by microdialysis. Barodenervation did not alter the release of glutamate in the rVLM evoked by visceral reflex stimulation. Iontophoresis of glutamate into the rVLM enhanced the activity of sympathetic premotor cardiovascular rVLM neurons. Also, the responses of these neurons to visceral afferent stimulation with BK were attenuated significantly (70%) by blockade of glutamatergic receptors with kynurenic acid. Microinjection of either an N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanate (25 mM, 30 nl) or an dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (2 mM, 30 nl) into the rVLM significantly attenuated the visceral sympathoexcitatory reflex responses. These results suggest that glutamate in the rVLM serves as an excitatory neurotransmitter through a baroreflex-independent mechanism and that both NMDA and AMPA receptors mediate the visceral sympathoexcitatory reflex responses.  相似文献   

16.
We have shown that vasopressinergic projections to dorsal brain stem are activated during exercise and facilitate exercise tachycardia in both trained (T) and sedentary (S) rats (Dufloth DL, Morris M, and Michelini LC. Am J Physiol Regulatory Integrative Comp Physiol 273: R1271-R1282, 1997). In the present study, we investigated whether oxytocinergic projections to the nucleus of the solitary tract (NTS)-dorsal motor nucleus of the vagus (DMV) complex (NTS/DMV) are involved in the differential heart rate (HR) response to exercise in T and S rats. Arterial pressure (AP) and HR responses to dynamic exercise (0.4-1.4 km/h) were compared in S and T pretreated with vehicle (saline), oxytocin (OT; 20 pmol/200 nl) or OT-receptor antagonist (OT(ant); 20 pmol/200 nl) into the NTS/DMV. OT content in specific brain regions and plasma were measured in separate S and T groups at rest and immediately after exercise. Exercise increased OT content in dorsal (4.5-fold) and ventral brain stem (2.7-fold) and spinal cord (3.4-fold) only in T rats. No significant changes were observed in neurosecretory regions or medial eminence and posterior pituitary, but plasma levels of T rats were reduced immediately after exercise. Blockade of NTS/DMV OT receptors did not change basal mean AP (MAP) and HR or the MAP response to exercise. However, OT(ant) potentiated exercise-induced tachycardia (average increase of 26%) only in the T group. Pretreatment with exogenous OT in the NTS/DMV blunted the tachycardic response both in S and T rats without changing the MAP response. Administration of OT-receptor antagonist or OT into the fourth cerebral ventricle had no effect on the cardiovascular response to dynamic exercise. Taken together, the results suggest that oxytocinergic projections to the NTS/DMV are stimulated when T rats exercise and that OT released at this level acts on OT receptors to restrain exercise-induced tachycardia.  相似文献   

17.
Stimulation of cardiac sympathetic afferents during myocardial ischemia with metabolites such as bradykinin (BK) evokes sympathoexcitatory reflex responses and activates neurons in the external lateral parabrachial nucleus (elPBN). The present study tested the hypothesis that this region in the pons processes sympathoexcitatory cardiac reflexes through an ionotropic glutamate receptor mechanism. The ischemic metabolite BK (0.1-1 μg) was injected into the pericardial space of anesthetized and bilaterally vagotomized or intact cats. Hemodynamic and renal sympathetic nerve activity (RSNA) responses to repeated administration of BK before and after unilateral 50-nl microinjections of kynurenic acid (Kyn; 25 mM), 2-amino-5-phosphonopentanoic acid (AP5; 25 mM), and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzol(F)quinoxaline (NBQX; 10 mM) into the elPBN were recorded. Intrapericardial BK evoked significant increases in mean arterial pressure (MAP) and RSNA in seven vagotomized cats. After blockade of glutamate receptors with the nonselective glutamate receptor antagonist Kyn, the BK-evoked reflex increases in MAP (50 ± 6 vs. 29 ± 2 mmHg) and RSNA (59 ± 8.6 vs. 29 ± 4.7%, before vs. after) were significantly attenuated. The BK-evoked responses returned to pre-Kyn levels 85 min after the application of Kyn. Similarly, BK-evoked reflex responses were reversibly attenuated by blockade of glutamate N-methyl-d-aspartate (NMDA) receptors with AP5 (n = 5) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors with NBQX (n = 5). In contrast, we observed that the repetitive administration of BK evoked consistent reflex responses including MAP and RSNA before and after microinjection of 50 nl of the artificial cerebrospinal fluid vehicle into the elPBN in five animals. Microinjection of glutamate receptor antagonists into regions outside the elPBN did not alter BK-induced reflex responses. Microinjection of Kyn into the elPBN reversibly attenuated BK-induced reflex responses in four vagus intact animals. These data are the first to show that NMDA and AMPA ionotropic glutamate receptors in the elPBN play an important role in processing cardiac excitatory reflex responses.  相似文献   

18.
Myocardial ischemia stimulates cardiac spinal afferents to initiate a sympathoexcitatory reflex. However, the pathways responsible for generation of increased sympathetic outflow in this reflex are not fully known. In this study, we determined the role of the paraventricular nucleus (PVN) in the cardiogenic sympathetic reflex. Renal sympathetic nerve activity (RSNA) and blood pressure were recorded in anesthetized rats during epicardial application of 10 microg/ml bradykinin. Bilateral microinjection of muscimol (0.5 nmol), a GABA(A) receptor agonist, was performed to inhibit the PVN. In 10 vehicle-injected rats, epicardial bradykinin significantly increased RSNA 178.4 +/- 48.5% from baseline, and mean arterial pressure from 76.9 +/- 2.0 to 102.3 +/- 3.3 mmHg. Microinjection of muscimol into the PVN significantly reduced the basal blood pressure and RSNA (n = 12). After muscimol injection, the bradykinin-induced increases in RSNA (111.6 +/- 35.9% from baseline) and mean arterial pressure (61.2 +/- 1.3 to 74.5 +/- 2.7 mmHg) were significantly reduced compared with control responses. The response remained attenuated even when the basal blood pressure was restored to the control. In a separate group of rats (n = 9), bilateral microinjection of the ionotropic glutamate antagonist kynurenic acid (4.82 or 48.2 nmol in 50 nl) had no significant effect on the RSNA and blood pressure responses to bradykinin compared with controls. These results suggest that the tonic PVN activity is important for the full manifestation of the cardiogenic sympathoexcitatory response. However, ionotropic glutamate receptors in the PVN are not directly involved in this reflex response.  相似文献   

19.
Xue BJ  He RR 《生理学报》2000,52(5):435-439
在36只麻醉Sprague-Dawley大鼠, 观察了最后区内微量注射辣椒素(10 μmol/L, 50 nl)对平均动脉压(MAP)、心率(HR)和肾交感神经放电(RSNA)的影响.实验结果如下:(1)最后区内注射辣椒素可引起 MAP、HR 和RSNA明显增加, 分别由12.34±0.53 kPa、 328.52±7.54 bpm 和100±0% 增至15.17±0.25 kPa (P<0.001)、 354.81±8.54 bpm (P<0.001) 和156.95±7.57% (P<0.001);(2) 静脉注射辣椒素受体阻断剂钌红(100 mmol/L, 0.2 ml) 后, 辣椒素的上述效应可被明显抑制;(3) 预先应用NMDA 受体阻断剂MK-801 (500 μg/kg, 0.2 ml, iv)也明显抑制辣椒素的兴奋效应.以上结果提示, 最后区微量注射辣椒素对血压、心率和肾交感神经放电有兴奋作用, 而此作用由辣椒素受体介导并有谷氨酸参与.  相似文献   

20.
The sphincter mechanism at the esophagogastric junction includes smooth muscle of the lower esophagus and skeletal muscle of the crural diaphragm (CD). Smooth muscle is known to be under the control of the dorsal motor nucleus of the vagus (DMV), while central nervous system (CNS) control of the CD is unknown. The main purposes of our study were to determine the CNS site that controls the CD and whether simultaneous changes in lower esophageal sphincter (LES) pressure and CD activity occur when this site is activated. Experiments were performed on anesthetized male ferrets whose LES pressure, CD activity, and fundus tone were monitored. To activate DMV neurons, L-glutamate was microinjected unilaterally into the DMV at three areas: intermediate, rostral, and caudal. Stimulation of the intermediate DMV decreased CD activity (-4.8 +/- 0.1 bursts/min and -0.3 +/- 0.01 mV) and LES pressure (-13.2 +/- 2.0 mmHg; n = 9). Stimulation of this brain site also produced an increase in fundus tone. Stimulation of the rostral DMV elicited increases in the activity of all three target organs (n = 5). Stimulation of the caudal DMV had no effect on the CD but did decrease both LES pressure and fundus tone (n = 5). All changes in LES pressure, fundus tone, and some DMV-induced changes in CD activity (i.e., bursts/min) were prevented by ipsilateral vagotomy. Our data indicate that simultaneous changes in activity of esophagogastric sphincters and fundus tone occur from rostral and intermediate areas of the DMV and that these changes are largely mediated by efferent vagus nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号