首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Glioblastoma multiforme (GBM) is a highly advanced and invasive brain tumor due to which current treatments cannot completely treat GBM or prevent recurrence. Therefore, adjunctive treatments are required. As part of the invasive and angiogenic nature of GBM, it has been well established that matrix metalloprotease-2 (MMP-2) and MMP-9 are overactive. To better treat GBM using chemotherapy, we have designed a hydrogel-based delivery system that can control the release of drugs based on the activity of MMPs. A model chemotherapeutic agent, cisplatin (CDDP), complexed to an MMP substrate (peptide-linker) was incorporated into poly(ethylene glycol) diacrylate hydrogel wafers having different poly(ethylene glycol) chain lengths (M(n) approximately 574 and 4000). Hydrogel wafers were studied for physical characteristics and drug release in the presence and absence of MMPs. There was a substantial increase in CDDP release for the poly(ethylene glycol) 4000 hydrogel indicating that this chain length provides a mesh size that is sufficient to permit MMP activity within the hydrogel. CDDP bioactivity increased when the cell media was spiked with MMPs (0% cell survival) in case of the longer chain length as compared to in the absence of MMPs (approximately 50% cell survival). The results suggest that this system can be used for selective, local delivery of drugs where higher amounts of the drug are released in response to metastasis, angiogenesis, and invasion-promoting proteases. This strategy may prove to be a novel and effective method to overcome inadequacies in current controlled drug release systems.  相似文献   

2.
We present a novel fully hydrophilic, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel suitable for soft tissue engineering and delivery of protein drugs. The gels were designed to overcome drawbacks associated with current PEG hydrogels (i.e., reaction mechanisms or degradation products that compromise protein stability): the highly selective and mild cross‐linking reaction allowed for encapsulating proteins prior to gelation without altering their secondary structure as shown by circular dichroism experiments. Further, hydrogel degradation and structure, represented by mesh size, were correlated to protein release. It was determined that polymer density had the most profound effect on protein diffusivity, followed by the polymer molecular weight, and finally by the specific chemical structure of the cross‐linker. By examining the diffusion of several model proteins, we confirmed that the protein diffusivity was dependent on protein size as smaller proteins (e.g., lysozyme) diffused faster than larger proteins (e.g., Ig). Furthermore, we demonstrated that the protein physical state was preserved upon encapsulation and subsequent release from the PEG hydrogels and contained negligible aggregation or protein–polymer adducts. These initial studies indicate that the developed PEG hydrogels are suitable for release of stable proteins in drug delivery and tissue engineering applications. Biotechnol. Bioeng. 2011; 108:197–206. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
The aim of the present work was to investigate the preparation of polyelectrolyte hydrogel as potential drug carrier for antibacterial Ciprofloxacin drug (CFX), intended for controlled release formulation. Hydrogel of N-trimehtyl chitosan (TMC)/sodium carboxymethyl xanthan gum (CMXG) was prepared and ciprofloxacin was employed as a model drug to investigate the loading and release performance of the prepared hydrogel. FTIR, DSC, TGA and SEM analysis were used to characterize the TMC/CMXG hydrogel and its CFX loaded hydrogel. The results showed that the ciprofloxacin was successfully incorporated and released from the prepared hydrogel without the loss of structural integrity or the change in its functionality. The encapsulation efficiency of CFX within the prepared hydrogel was found to be increased with increasing the concentration of drug reaching about 93.8 ± 2.1% with concentration of CFX 250 µg/ml. It was shown also that the drug is entrapped within the gel without significant interaction as confirmed from FTIR spectra and DSC analysis. In vitro release study in phosphate buffer saline (PBS), indicated the steady rise in cumulative drug release with the highest release amount, reaching about 96.1 ± 1.8% up to 150 min, whereby the gel with high drug loading efficiency (3.52 ± 0.07%) displayed faster and higher release rate than that of gel containing a smaller amount of drug (0.44 ± 0.01%). The release kinetics of loaded drug followed zero-order kinetics. CFX drug loaded hydrogel showed high activity against the gram positive and gram negative bacterial strains due to the successful released of CFX from the CFX loaded hydrogel into the tested bacterial strains with the highest diameter of inhibition zone against Escherichia coli (67.0 ± 1.0) as compared to reference antibiotic, Gentamicin (28 ± 0.5). Cytotoxicity of the prepared hydrogel was examined in vitro using lung human normal cell lines and showed the highest cell viability (97 ± 0.5%) at concentration up to 50 µg/ml. Consequently, TMC/CMXG hydrogel can be proposed as new controlled release drug delivery system.  相似文献   

4.
A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.  相似文献   

5.
For improving effectiveness of conventional chemotherapy of subcutaneous tumor, we selected 2-methoxyestradiol (2-ME) as a model drug, local injectable PLGA-PEG-PLGA copolymer thermosensitive hydrogel loading 2-ME liposomes instead of free 2-ME as a novel two-phase drug delivery system was developed, which avoid rapid clearance of liposomes follwing systemic administration. This new transport system was characterized in vitro and in vivo including rheological behavior, thermo-sensitiveness, stability, released character and intratumoral delivery. The PLGA-PEG-PLGA copolymer solution exhibited still reversible thermosensitive property and better syringeability after incorporated 2-ME liposomes. The 2-ME liposomes were demonstrated stable in the hydrogel by five methods such as scanning electron microscopy (SEM), fluorescent labeling, opalescence, particle size and ultrafiltration methods. Results showed that intact liposomes could be released from the hydrogel and following zero-order model, and sustained release one–two months in vitro and in vivo. In vivo release data demonstrating that 2-ME liposomes could be transported to tumor site, improved therapeutic efficacy and bioavailability of 2-ME liposomes in subcutaneous tumor chemotherapy.  相似文献   

6.
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.  相似文献   

7.
The aim of this work was the formulation and characterization of alginate (ALG)–doxycycline (DOX) hydrogel microparticles (MPs) embedded into Pluronic F127 thermogel for DOX intradermal sustained delivery. ALG–DOX MPs were formed by adding a solution of the drug into a 1.5% polymer solution while stirring. The MPs were cross-linked by dispersion into a 1.2% CaCl2 solution. Free MPs were characterized in terms of size, drug content, and release behavior by HPLC and UV–vis. DOX and hydrogel MPs were embedded into PF127, PF127-HPMC, and PF127-Methocel thermogels. The thermogels were characterized in terms of gelling time, morphology, and release behavior. A target release period of 4–7 days was considered optimal. The hydrogel MPs were about 20 μm in size with 90% of the population <59 μm. Drug content was about 35% (w/w). DOX released rapidly from the MPs, 90% within 2 days. An expected faster release was observed for free DOX from the thermogels with 80–90% of drug released after 3.5–4 h even in the presence of 1% HPMC or Methocel. The release was sustained after embedding the MPs into PF127 and PF127-HPMC thermogels. In particular, the PF127-HPMC thermogel showed an almost linear release, reaching 80% after 3 days and 90% up to 6 days. Although a further characterization and formulation assessment is required to optimize MP characteristics, ALG/DOX-loaded hydrogel MPs, when embedded into a PF127-HPMC thermogel, show a potential for achieving a 7-day sustained release formulation for DOX intradermal delivery.  相似文献   

8.
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.  相似文献   

9.
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC‐based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1255–1264, 2013  相似文献   

10.
High molecular weight polymers (> 20 000 Da) have been widely used as soluble drug carriers to improve drug targeting and therapeutic efficacy. Dendritic polymers are exceptional candidates for the preparation of near monodisperse drug carriers due to their well-defined structure, multivalency, and flexibility for tailored functionalization. We evaluated various dendritic architectures composed of a polyester dendritic scaffold based on the monomer unit 2,2-bis(hydroxymethyl)propanoic acid for their suitability as drug carriers both in vitro and in vivo. These systems are both water soluble and nontoxic. In addition, the potent anticancer drug, doxorubicin, was covalently bound via a hydrazone linkage to a high molecular weight 3-arm poly(ethylene oxide)-dendrimer hybrid. Drug release was a function of pH, and the release rate was more rapid at pH < 6. The cytotoxicity of the DOX-polymer conjugate measured on multiple cancer lines in vitro was reduced but not eliminated, indicating that some active doxorubicin was released from the drug polymer conjugate under physiological conditions. Furthermore, biodistribution experiments show little accumulation of the DOX-polymer conjugate in vital organs, and the serum half-life of doxorubicin attached to an appropriate high molecular weight polymer has been significantly increased when compared to the free drug. Thus, this new macromolecular system exhibits promising characteristics for the development of new polymeric drug carriers.  相似文献   

11.
Intracranial controlled release polymers may improve drug administration to the brain, where therapy is frequently limited due to the low permeability of brain capillaries to therapeutic agents. On the basis of drug transport and elimination rates, we proposed that high molecular weight, water-soluble molecules would be retained in the brain space following release from an intracranial implant. To test this hypothesis, solid particles of different molecular weight fractions of fluorescein isothiocyanate labeled dextran (FITC-dextran; 4 x 10(3) Da (4 kDa) < weight-averaged molecular weight (Mw) < 150 kDa) or fluorescein were uniformly dispersed in matrices of a polyanhydride copolymer synthesized from a fatty acid dimer and sebacic acid in a 50:50 ratio, P(FAD:SA). When incubated in buffered saline, FITC-dextran fractions of 70 kDa Mw were released from the polymer within 48 h; 4 kDa Mw FITC-dextran and fluorescein were released more slowly. Following implantation of P(FAD:SA) matrices containing either 70 kDa Mw FITC-dextran, 4 kDa Mw FITC-dextran, or fluorescein into the brains of normal rats, fluorescent tracers were continuously released into the brain tissue for 30 days. Tracer concentrations within the brain were significantly higher for large molecular weight tracers (70 kDa Mw FITC-dextran > 4 kDa Mw FITC-dextran > fluorescein). The rate of elimination, kapp, of each tracer from the brain was determined by comparing experimental data with a model describing tracer diffusion/elimination in the brain extracellular space; kapp decreased with increasing molecular weight (fluorescein > 4 kDa Mw FITC-dextran > 70 kDa Mw FITC-dextran).  相似文献   

12.
A drug‐releasing model compound based on photosensitive acrylated ortho‐nitrobenzylether (o‐NBE) moiety and fluorescein was synthesized to demonstrate photolysis as a mechanism for drug release. Release of this model compound from a hydrogel network can be controlled with light intensity (5–20 mW/cm2), exposure duration (0–20 min) and wavelength (365, 405, 436 nm). Due to the high molar absorptivity of the compound (5,984 M?1 cm?1), light attenuation is significant in this system. Light attenuation can be used to self‐limit the dosing from a hydrogel, and allow subsequent release from the drug reservoir after equilibration, or attenuation can be utilized to create a chemical gradient within the hydrogel. A model of photodegradation that uses an integrated form of Beer–Lambert's law quantitatively predicts release from hydrophilic hydrogels with low crosslink density, but fails to quantitatively predict release from more hydrophobic systems, presumably due to partitioning of the hydrophobic model compound in the hydrogel. In contrast to other mechanisms of release (enzymolysis, hydrolysis), photolysis provides real‐time on demand control over drug release along with the unique ability to create chemical gradients within the hydrogel. Biotechnol. Bioeng. 2010;107: 1012–1019. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
The use of polymer carriers for the controlled release of bioactive agents including polypeptides is discussed. This paper reviews release mechanisms from polymers, examines applications of these systems, explores approaches to control drug delivery in response to physiological needs, and discusses the impact of controlled drug release with respect to biotechnology.  相似文献   

14.
A novel liposome/hydrogel soft nanocomposite was explored as a controlled drug delivery system. A P2VP-PAA-PnBMA biocompatible, pH-responsive triblock terpolymer was used as an injectable gelator, entrapping PC/Chol liposomes loaded with calcein as hydrophilic model drug. The composite hydrogel was formed in vitro through a pH-induced sol-gel transition by dialysis against buffer under physiological conditions and at polymer concentration as low as 1 wt %. Excellent control of the calcein release was achieved just by adjusting the gelator concentration; that is, from 1 to 1.5 wt %, the drug release period was significantly prolonged from 14 to 32 days.  相似文献   

15.
Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX). To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO) prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.  相似文献   

16.
Nowadays, the modern pharmaceutical investigations are directed toward obtaining of new polymer micro- and nano-sized drug delivery carriers. In this respect, the use of hydrogel carriers based on polyzwitterions (PZIs) is an opportunity in the preparation of polymer drug delivery systems with desired characteristics. This paper describes the synthesis and characterization of micro-structured p(VA-co-DMAPS) systems with different compositions in situ loaded with Ibuprofen by emulsifier-free emulsion copolymerization (EEC) in water. The mean size of the prepared microparticles was measured by SEM and particles have been visualized by AFM. The inclusion of Ibuprofen in the polyzwitterionic copolymer microgel systems was established by using DSC. In vitro drug release experiments were carried out in order to estimate the ability of the obtained microgels to modify the release of water-insoluble Ibuprofen.  相似文献   

17.
The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel.  相似文献   

18.
A method of controlled release that allows the continuous local application of retinoids (vitamin A derivatives) in living tissues has been developed. Several biocompatible 200-microns-diameter polymeric beads have been tested as possible carriers. Each type of bead was loaded by soaking in an isotopically labeled retinoid solution, washed, and then transferred into tissue culture medium for quantitative release measurements. Positively-charged ion-exchange resins of the Dowex 1 type were found to be the most suitable for the controlled release of retinoic acid, a negatively charged compound. For the controlled release of uncharged retinoids such as retinyl acetate, uncharged acrylic ester polymer beads are preferred; these beads can also be used to release the negatively charged compounds retinoic acid and prostaglandin E1. In all cases, a prolonged release is obtained that persists for more than a day. During this interval, the release is diffusion-controlled, and the total amount of compound released is directly proportional to the amount of the compound that the bead is exposed to during the initial loading step. High-performance liquid chromatography has been used to analyze the nature of the released retinoid. When the positively charged beads are loaded with all-trans-retinoic acid, there is a time-dependent decrease in the proportion of the all-trans isomer released which is due to an increased release of two cis isomers. This isomerization reaction occurs at a considerably slower rate when the uncharged beads are used as carriers. To mimic the conditions under which the local release of retinoic acid causes striking pattern duplications in developing chick wings, beads loaded with isotopically labeled retinoids were manually implanted into a slit cut into wing buds of stage-20 chick embryos. The release rate obtained was comparable to that found in vitro, and a time-dependent accumulation of the released radioactive compound was measured that was confined to the tissue near the site of implantation. All of the beads tested were readily accommodated by the tissue and could be easily removed at any time to terminate the treatment. It is believed that the controlled release of chemicals from such tiny biocompatible implants has a wide potential range of applications in biology.  相似文献   

19.
In this paper, we reported the synthesis and properties of interpenetrating polymer network (IPN) hydrogel systems designed for colon targeted drug delivery. The gels were composed of konjac glucomannan (KGM) and cross-linked poly(acrylic acid) (PAA) by N,N-methylene-bis-(acrylamide) (MBAAm). It was possible to modulate the swelling degree of the gels. And the swelling ratio has sensitive respondence to the environmental pH value variation. The degradation tests show that the hydrogels retain the enzymatic degradation character of KGM. In vitro release of model drug VB12 was studied in the presence of Cellulase E0240 in pH 7.4 phosphate buffer at 37 °C. The accumulative release percent of the model drug reached 85.6% after 48 h and the drug release was controlled by the swelling and the degradation of the hydrogels. The results indicated that the IPN hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

20.
The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号