首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
We demonstrated previously that c‐Jun, JunB and c‐Fos RNA were dysregulated in metastatic melanoma cells compared with normal human melanocytes. The purpose of this study was to evaluate the distribution in composition of AP‐1 dimers in human melanoma pathogenesis. We investigated AP‐1 dimer pairing in radial growth phase‐like (RGP) (w3211) and vertical growth phase‐like (VGP) (w1205) human melanoma cells and metastatic cell lines (cloned from patients, c83‐2c, c81‐46A, A375, respectively) compared with melanocytes using electrophoretic mobility shift assay (EMSA), Western blot and transfection analyses. There are progressive variations in AP‐1 composition in different melanoma cell lines compared with normal melanocytes, in which c‐Jun, JunD and FosB were involved in AP‐1 complexes. In w3211, c‐Jun, JunD and Fra‐1 were involved in AP‐1 binding, while in w1205, overall AP‐1 binding activity was decreased significantly and supershift binding was detected only with JunD antibodies. In metastatic c81‐46A and A375 cells, only JunD was involved in AP‐1 binding activity, but in a third (c83‐2c) c‐Jun, JunD and Fra‐1 were present. Western blot evaluation detected c‐Jun in melanocytes and w3211, but this component was decreased significantly or was not detectable in w1205, c81‐46A and A375 cells. In contrast, JunD protein was elevated in c81‐46A and c83‐2c cells compared with melanocytes and RGP and VGP cell lines. Normal melanocytes and c83‐2c cells (which have c‐Jun involved in AP‐1 binding), transfected with c‐Jun antisense and treated with cisplatin, showed higher viability compared with untransfected cells, while in c81‐46A cells (in which only JunD is detectable) no change in cell viability was observed following treatment with cisplatin and c‐jun antisense transfection. A dominant‐negative c‐Jun mutant (TAM67) significantly increased the soft agar colony formation of w3211 and c83‐2c cells. These results suggest that components of AP‐1, especially c‐Jun, may offer a new target for the prevention or treatment of human melanoma progression.  相似文献   

4.
5.
Satomi H  Wang B  Fujisawa H  Otsuka F 《Cytokine》2002,18(2):108-115
Interferon (IFN)-alpha and IFN-beta have been utilized in the treatment of melanoma as a form of cytokine therapy. While previous studies have demonstrated that melanocytes and melanoma cells produce a number of cytokines, it remains unclear whether or not melanocytes and melanoma cells per se produce IFN-alpha or IFN-beta. In the present study, we investigated the expression of IFN-alpha or IFN-beta in human melanocytes and five melanoma cell lines: G-361, C32TG, MMAc, MEWO and VMRC-MELG at both mRNA and protein levels. Both IFN-alpha and IFN-beta mRNA were detected in normal human melanocytes. Likewise, IFN-alpha mRNA was detected in all five melanoma cell lines. However, IFN-beta mRNA was only detected in one melanoma cell line, VMRC-MELG. When melanocytes and melanoma cells were treated with a potent IFN inducer, polyinosinic:polycytidylic acid (poly I:C), the mRNA expression of both IFN-alpha and IFN-beta was significantly upregulated. Poly I:C was not able to induce melanocytes or melanoma cells to produce detectable amounts of IFN-alpha protein, but able to induce a significant amount of IFN-beta in melanocytes and two of the melanoma cell lines: MMAc and VMRC-MELG. Moreover, similar to exogenous IFN-alpha and IFN-beta, poly I:C significantly inhibited the proliferation of all five melanoma cell lines. This suppressive effect was partially blocked by anti-IFN-beta antibody treatment in the IFN-beta-producing melanoma cell lines: MMAc and VMRC-MELG, but not in the non-IFN-beta-producing cell lines: G-361, C32TG and MEWO. Collectively, these studies have demonstrated for the first time that human melanocytes and melanoma cells produce IFN-beta. Furthermore, melanoma cells are capable of suppressing their own proliferation via secretion of endogenous IFN-beta. This finding may have important implications for melanoma therapy.  相似文献   

6.
7.
8.
9.
10.
11.
Redefining the skin's pigmentary system with a novel tyrosinase assay   总被引:5,自引:0,他引:5  
In mammalian skin, melanin is produced by melanocytes and transferred to epithelial cells, with the epithelial cells thought to receive pigment only and not generate it. Melanin formation requires the enzyme tyrosinase, which catalyzes multiple reactions in the melanin biosynthetic pathway. Here, we reassess cutaneous melanogenesis using tyramide-based tyrosinase assay (TTA), a simple test for tyrosinase activity in situ. In the TTA procedure, tyrosinase reacts with biotinyl tyramide, causing the substrate to deposit near the enzyme. These biotinylated deposits are then visualized with streptavidin conjugated to a fluorescent dye. In the skin and eye, TTA was highly specific for tyrosinase and served as a sensitive indicator of pigment cell distribution and status. In clinical skin samples, the assay detected pigment cell defects, such as melanocytic nevi and vitiligo, providing confirmation of medical diagnoses. In murine skin, TTA identified a new tyrosinase-positive cell type--the medullary cells of the hair--providing the first example of cutaneous epithelial cells with a melanogenic activity. Presumably, the epithelial tyrosinase originates in melanocytes and is acquired by medullary cells during pigment transfer. As tyrosinase by itself can generate pigment from tyrosine, it is likely that medullary cells produce melanin de novo. Thus, we propose that melanocytes convert medullary cells into pigment cells by transfer of the melanogenic apparatus, an unusual mechanism of differentiation that expands the skin's pigmentary system.  相似文献   

12.
13.
We evaluated the neuroprotective effects of β‐methylphenylalanine in an experimental model of rotenone‐induced Parkinson's disease (PD) in SH‐SY5Y cells and rats. Cells were pre‐treated with rotenone (2.5 µg/mL) for 24 hours followed by β‐methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4‐dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre‐treated cells, β‐methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β‐Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH‐SY5Y cells. In the rotenone‐induced rat model of PD, oral administration of β‐methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β‐Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β‐methylphenylalanine. Our experimental results show neuroprotective effects of β‐methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β‐methylphenylalanine may be useful in the treatment of PD.  相似文献   

14.
Tryptophan hydroxylase expression in human skin cells   总被引:5,自引:0,他引:5  
We attempted to further characterize cutaneous serotoninergic and melatoninergic pathways evaluating the key biosynthetic enzyme tryptophan hydroxylase (TPH). There was wide expression of TPH mRNA in whole human skin, cultured melanocytes and melanoma cells, dermal fibroblasts, squamous cell carcinoma cells and keratinocytes. Gene expression was associated with detection of TPH immunoreactive species by Western blotting. Characterization of the TPH immunoreactive species performed with two different antibodies showed expression of the expected protein (55-60 kDa), and of forms with higher and lower molecular weights. This pattern of broad spectrum of TPH expression including presumed degradation products suggests rapid turnover of the enzyme, as previously reported in mastocytoma cells. RP-HPLC of skin extracts showed fluorescent species with the retention time of serotonin and N-acetylserotonin. Immunocytochemistry performed in skin biopsies localized TPH immunoreactivity to normal and malignant melanocytes. We conclude that while the TPH mRNA and protein are widely expressed in cultured normal and pathological epidermal and dermal skin cells, in vivo TPH expression is predominantly restricted to cells of melanocytic origin.  相似文献   

15.
In contrast to neurite outgrowth, pigment cell dendrite formation is relatively unstudied. Keratinocyte-conditioned medium (KCM) induces a striking dendricity in human melanocytes and B16 melanoma cells that is detectable within 30 min, maximal in 24–48 hr, and quantifiable by computerized image analysis. Cyto-chalasin B (CB), known to disrupt actin microfilaments, completely blocks dendrite formation if added to cultures before or with KCM. This effect is rapidly reversible, and dendrites appear within 1 hr after refeeding with KCM alone. In contrast, CB treatment fails to disrupt existing dendrites previously induced by KCM. Agents known to cause microtubule disassembly (colchicine, nocodazole, or vinblastine) do not inhibit dendrite formation if added before or with KCM. In contrast, these agents disrupt established dendrites Inhibition of protein synthesis with cycloheximide or actinomycin D completely blocks dendrite formation, but if cultures are provided fresh KCM lacking protein synthesis inhibitors, dendrites reappear within 24 hr. Actin microfilaments visualized with a monoclonal antibody or rhodamine-phalloidin are poorly organized in untreated cells, but form numerous fibers localized along dendrites in KCM-treated cells. Microtubules visualized with a monoclonal anti-tubulin antibody are localized in the center of dendrites. These cytoskeletal changes occur without altering β actin or β tubulin mRNA levels. Taken together, these data implicate actin microfilaments in dendrite outgrowth, but not in maintenance, and conversely microtubules in dendrite maintenance but not in formation. These keratinocyte-induced changes involving β actin and β tubulin polymerization appear to require both new protein synthesis and post-translational regulation. The observed similarities between melanocytes and other neural crest-derived cells suggest that cutaneous pigment cells might serve as an alternative model for studies of neurite outgrowth. © 1992 Wiley-Liss, Inc.  相似文献   

16.
17.
Physiological stress induces tyrosine hydroxylase, the rate-limiting enzyme for catecholamine biosynthesis, via trans-synaptic mechanisms within the adrenal medulla. Previous studies have implicated cAMP as a second messenger capable of inducing tyrosine hydroxylase; however, it is unclear whether any receptor coupled to adenylate cyclase mediates tyrosine hydroxylase induction. Recently, vasoactive intestinal polypeptide, whose receptor is coupled to adenylate cyclase in many tissues, has been shown to meet many of the criteria for a neuromodulator within the adrenal medulla. We therefore undertook a series of studies to determine whether vasoactive intestinal polypeptide may induce tyrosine hydroxylase in PC12 cells, a cell line derived from rat adrenal medulla. Here we report that vasoactive intestinal polypeptide produces a transient, time- and concentration-dependent increase in tyrosine hydroxylase mRNA levels which is followed by a stable increase in tyrosine hydroxylase protein. The increase in tyrosine hydroxylase mRNA does not occur in a mutant PC12 cell line deficient in cAMP-dependent protein kinase activity, indicating that the effect of vasoactive intestinal polypeptide is mediated through the cAMP second messenger pathway. This is the first report demonstrating that a neuromodulator which acts on an adenylate cyclase-coupled receptor can induce tyrosine hydroxylase.  相似文献   

18.
Paired cultures of early‐passage melanoma cells and melanocytes were established from metastatic lesions and the uninvolved skin of five patients. In this stringent autologous setting, cDNA profiling was used to analyze a subset of 1477 genes selected by the Gene Ontology term ‘immune response’. Human Leukocyte Antigen E (HLA‐E) was ranked 19th among melanoma‐overexpressed genes and was embedded in a transformation signature including its preferred peptide ligand donors HLA‐A, HLA‐B, HLA‐C, and HLA‐G. Mostly undetectable in normal skin and 39 nevi (including rare and atypical lesions), HLA‐E was detected by immunohistochemistry in 17/30 (57%) and 32/48 (67%) primary and metastatic lesions, respectively. Accordingly, surface HLA‐E was higher on melanoma cells than on melanocytes and protected the former (6/6 cell lines) from lysis by natural killer (NK) cells, functionally counteracting co‐expressed triggering ligands. Although lacking HLA‐E, melanocytes (4/4 cultures) were nevertheless (and surprisingly) fully protected from NK cell lysis.  相似文献   

19.
Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.  相似文献   

20.
Melanocytic behavior, survival, and proliferation are regulated through a complex system of cell–cell adhesion molecules. Pathologic changes leading to development of malignant melanoma, upset the delicate homeostatic balance between melanocytes and keratinocytes and can lead to altered expression of cell–cell adhesion and cell–cell communication molecules. Malignant transformation of melanocytes frequently coincides with loss of E‐cadherin expression. We now show loss of another member of the superfamily of classical cadherins, H‐cadherin (CDH13), which may be involved in the development of malignant melanoma. The provided data show that H‐cadherin expression is lost in nearly 80% of the analyzed melanoma cell lines. Knockdown of H‐cadherin using siRNA increases invasive capacity in melanocytes. Functional assays show that the re‐expression of H‐cadherin decreases migration and invasion capacity, as well as anchorage‐independent growth in comparison to control melanoma cells. Furthermore, melanoma cells, which re‐express H‐cadherin via stable transfection show a reduction in rate of tumor growth in a nu/nu mouse tumor model in comparison to the parental control transfected cell lines. Our study presents for the first time the down‐regulation of H‐cadherin in malignant melanomas and its possible functional relevance in maintenance healthy skin architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号