首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: How important are habitat configuration, quality, history and anthropic disturbance in determining nemoral plant species richness and distribution of fragmented forest patches in a Mediterranean region? Location: Agricultural landscape north of Rome, Italy. Methods: Sixty‐nine woodland patches, identified through a stratified random sampling, were sampled for nemoral plant species. The homogeneity of woodlands was tested through a hierarchical classification of the floristic data and a Mann‐Whitney test of dependent and independent variables. The importance of habitat configuration (area, isolation, shape), quality (soil properties, forest structure, anthropic disturbance) and history (age of woodland) in determining species richness was estimated through a Poisson regression model. Presence‐absence of each species was analysed by logistic regression. Differences among plant life‐trait types (life span, dispersal mode, habitat preference) were analysed by comparing their median β‐values through ANOVA models. Results: Through hierarchical classification, two woodland types were identified that differed in species composition, habitat quality and spatial configuration. Poisson regression showed that habitat configuration and history influenced species richness. Multiple logistic regression resulted in significant fits for 88 species/variable combinations: 38 are habitat quality variables, 25 are habitat configuration variables, and 13 are anthropic factors. Dispersal strategies varied significantly with respect to area, isolation and age, while generalist and specialist species differed according to age of the woodland. Conclusion: Our results show that habitat history and configuration are the key factors determining species richness of woodland. Together with habitat configuration, habitat quality (mainly soil acidity) appeared to influence species composition.  相似文献   

2.
Questions: 1. How big is the difference in the herbaceous layer composition between flooded and unflooded stands? 2. Are there species or species groups which have an affinity to ancient vs. recent forests in stands with different water regimes? 3. Are patterns of life history traits different between flooded and unflooded stands as well as between ancient and recent forests in stands with a different water regime? Location: Floodplain forests in the Middle Elbe region and district of Leipzig, Central Germany. Location: The herbaceous layer was studied in randomly selected quadrats of 9 m2 in 2000 and 2001. Six ancient (nplot=59) and six adjacent recent forests (nplot=108) were investigated in flooded stands as well as three ancient (nplot=41) and three recent forests (nplot=70) in stands that have not been flooded for 50 years. The association of single species, species groups and life history traits were statistically tested for flooded vs. unflooded stands and for ancient vs. recent forests. Results: Interruption of flooding caused a complete species turnover in the herbaceous layer composition. Whereas in the still flooded stands typical alluvial species prevail, species composition in stands without flooding for 50 years showed a closed relation to the Stellario‐Carpinetum. Six herbaceous species in the flooded and five in the unflooded stands showed a preference for ancient forests. Only one species in the flooded and six herbaceous species in the unflooded stands are significantly associated with recent forests. Life history traits differ between flooded and unflooded stands but are similar in ancient and recently flooded stands, while unflooded ancient forests have more geophytes and myrmecochorous species than recent forests. Conclusions: The specificity of species composition in floodplain forests can only be maintained by regular flooding. Interruption of inundations lead to differences in the patterns of species composition and life history traits between ancient and recent forests.  相似文献   

3.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

4.
5.
6.
Global circulation models predict an increase in mean annual temperature between 2.1 and 4.6 °C by 2080 in the northern temperate zone. The associated changes in the ratio of extinctions and colonizations at the boundaries of species ranges are expected to result in northward range shifts for a lot of species. However, net species colonization at northern boundary ranges, necessary for a northward shift and for range conservation, may be hampered because of habitat fragmentation. We report the results of two forest plant colonization studies in two fragmented landscapes in central Belgium. Almost all forest plant species (85%) had an extremely low success of colonizing spatially segregated new suitable forest habitats after c . 40 years. In a landscape with higher forest connectivity, colonization success was higher but still insufficient to ensure large-scale colonization. Under the hypothesis of net extinction at southern range boundaries, forest plant species dispersal limitation will prevent net colonization at northern range boundaries required for range conservation.  相似文献   

7.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

8.
The species–environment relationships for woody species may vary according to the forest layers considered. In fragmented forest, spatial configuration may also influence forest layer composition. We investigated the relationships between four forest layer compositions and environmental conditions, and spatial variables accounting for forest fragmentation, in 59 forest stands. Field and shrub layer compositions were mainly linked to environmental conditions, particularly to soil pH and slope aspect, while the upper layer compositions were principally correlated to the spatial configuration. The distance from the forest edge was correlated with all the forest layer compositions. Our results suggest that woody species respond to factors acting at different spatial and temporal scales, depending on the forest layer they belong to. The species–environment relationship seems to weaken from the lower to upper layer, the upper layer being more closely linked to the spatial configuration and probably to the past management. This study underlines the importance of taking spatial configuration in addition to environmental conditions into account when studying woody plant diversity for different forest layers in stands located in deciduous fragmented forests. Moreover, stand history seems to have a lasting effect on woody plant composition, particularly for the tree layer.  相似文献   

9.
B.J. Graae 《植被学杂志》2000,11(6):881-892
Abstract. Forest species composition was recorded in 82 forests in the Himmerland and Hornsherred regions in Denmark and analysed with respect to isolation (distance to other forests and areas of forest), forest continuity (older or younger than 200 yr), soil pH, tree species composition and seed dispersal groups. Continuity and isolation measures were correlated with forest species richness in Hornsherred. Myrmecochorous, autochorous, anemoballistic and endozoochorous species were markedly fewer in recent than in ancient forests. In Himmerland, patterns were much weaker and few significant correlations were found between forest species richness or different seed dispersal groups and continuity or isolation of the forests. Differences between the two regions may result from less intensive land use, a more humid climate and a smaller species pool with less species with short distance dispersal in Himmerland. Landscape fragmentation therefore appears to limit forest species’recolonization more in Hornsherred than in Himmerland.  相似文献   

10.
气候变化条件下东北森林主要建群种的空间分布   总被引:2,自引:1,他引:2  
冷文芳  贺红士  布仁仓  胡远满 《生态学报》2006,26(12):4257-4266
全球气候模型HADCM2SUL和CC-CM1分别预测100a后全球年均温增加3.7℃和5.2℃,年降水增加30.7%和25.1%。为了研究东北森林对这两种预测方案的反应,使用logistic回归模型分析了东北森林8个建群种与11种环境因子之间的相关关系。结果表明,除了山杨和蒙古栎之外,年均温是决定其它树种存在与否的重要因子。采用模型结果预测现行气候条件下8个树种的分布并与其现实分布比较,发现针叶树种的总正确率、敏感度、指定度和错误肯定率均比阔叶树种的要高,而错误否定率比后者低,说明模型对针叶树种的拟合程度要优于对阔叶树种的拟合程度。在此基础上,预测了8个树种在两种气候变化方案下100a后的分布图。结果表明,在HADCM2SUL方案下,兴安落叶松、白桦、冷杉和云杉的覆盖率分别下降91.2%、67.4%、11.9%、10%;长白落叶松、红松和蒙古栎的覆盖率分别增长87.8%、54.6%、31.3%;在CGCM1方案下,兴安落叶松、白桦、云杉、冷杉和红松的覆盖率分别下降99.2%、89.9%、85.9%、83.2%、4.9%;长白落叶松、蒙古栎的覆盖率分别增长93.3%、27.5%;山杨在这两种方案下数量不变。  相似文献   

11.
Plant species richness of twenty old-growth forest reserves in the cool-temperate zone in the Kanto region, Japan were investigated to detect the effect of forest fragmentation. The species richness of trees and forest floor plants were analyzed by multiple regression models relating to nine variables on the characteristics of landscape, local habitat and forest stand. The total species diversity did not have a significant correlation with any variables of landscape patterns. In this study, single large reserve in the SLOSS discussion did not seem very effective to preserve more species. However, forest reserves in large patches tend to have relatively infrequent species. Large patches of natural forests were regarded as one of the important factors to preserve infrequent species.  相似文献   

12.

Aim

To evaluate the relative importance of climatic versus soil data when predicting species distributions for Amazonian plants and to gain understanding of potential range shifts under climate change.

Location

Amazon rain forest.

Methods

We produced species distribution models (SDM) at 5‐km spatial resolution for 42 plant species (trees, palms, lianas, monocot herbs and ferns) using species occurrence data from herbarium records and plot‐based inventories. We modelled species distribution with Bayesian logistic regression using either climate data only, soil data only or climate and soil data together to estimate their relative predictive powers. For areas defined as unsuitable to species occurrence, we mapped the difference between the suitability predictions obtained with climate‐only versus soil‐only models to identify regions where climate and soil might restrict species ranges independently or jointly.

Results

For 40 out of the 42 species, the best models included both climate and soil predictors. The models including only soil predictors performed better than the models including only climate predictors, but we still detected a drought‐sensitive response for most of the species. Edaphic conditions were predicted to restrict species occurrence in the centre, the north‐west and in the north‐east of Amazonia, while the climatic conditions were identified as the restricting factor in the eastern Amazonia, at the border of Roraima and Venezuela and in the Andean foothills.

Main conclusions

Our results revealed that soil data are a more important predictor than climate of plant species range in Amazonia. The strong control of species ranges by edaphic features might reduce species’ abilities to track suitable climate conditions under a drought‐increase scenario. Future challenges are to improve the quality of soil data and couple them with process‐based models to better predict species range dynamics under climate change.  相似文献   

13.
Question: Do tree species, with different litter qualities, affect the within‐forest distribution of forest understorey species on intermediate to base‐rich soils? Since habitat loss and fragmentation have caused ancient forest species to decline, those species are the main focus of this study. Location: Three ancient forests, along a soil gradient from acidification‐sensitive to base‐rich, were studied: Limbrichterbosch and Savelsbos in The Netherlands and Holtkrat in Denmark. Methods: Canopy and soil surveys along transects generated data for Redundancy Analysis on tree – humus relationships. We analysed the distribution of forest plant species with Canonical Correspondence Analysis. The explanatory factors were soil characteristics (pH, organic matter, loam content and thickness of the humus layers), external crown projection, ground water and canopy data. We further analysed the relationship between forest species and humus characteristics with Spearman correlations. Results: Tree species have a significant impact on humus characteristics through the nature of their litter. Humus characteristics significantly explain the distribution of forest understorey species. The pH of the first 25 cm mineral soil and the thickness of the F‐ (fermentation) layer are the primary factors affecting the distribution of ancient forest species. Conclusion: This study indicates that the species composition of the forest canopy affects the distribution of forest understorey species. Ancient forest species are more abundant and frequent underneath trees with base‐rich litter. On acidification‐sensitive soils these relationships were stronger than on more base‐rich, loamy soils.  相似文献   

14.
海南岛坝王岭热带天然要植物物种多样性研究   总被引:9,自引:2,他引:9  
采用植物群落学和植物种群学的研究方法,从数量和质量 特征两个方面研究了海南岛坝王岭热带天然林的植物物种多样性。结果表明:⑴该地区不同植物群落的优势种类组成差别较大,彼此之间的物种相似性水平低;⑵相对于低地雨林而言,该地区的山地雨林物种数量较多,物种均匀度较高,主要优势种的优势程度较弱;⑶在优先考虑物种稀有性的前提下,根据各物物种在群落中所处的位置及其分布情况,可将该地区的植物物种分为珍稀濒危种、特  相似文献   

15.
森林所有制对景观格局和动物生境的影响研究进展   总被引:3,自引:0,他引:3  
在欧美等地区的林业发达国家,多种森林所有制长期并存,至今,多种所有制影响下森林景观和生境格局的变化以及与动物保护之间的关系成为研究热点和重点.本文首先阐述了森林所有制对森林景观格局和动物生境的影响,以及林权分散和林权流转的加剧带来的生态后果,包括提供多样化的生境和导致原有大面积生境的破碎化;其次,总结了林业发达国家解决林权分散与生物保护之间矛盾的两个理论途径--改变所有制格局和相对统一各所有制的管理行为,分析现多采用后一种途径的原因,并指出目前森林所有制研究中模拟方法的局限;最后,论述我国的研究现状以及面临的机遇和挑战,提出近期发展建议.  相似文献   

16.
林火对植物根围丛枝菌根真菌多样性的影响   总被引:1,自引:0,他引:1  
孙龙燕  李士美  李伟  郭绍霞 《生态学报》2016,36(10):2833-2841
林火是森林生态系统的一种主要干扰因子,以青岛市三标山林火迹地为研究对象,采集荆条(Vitex negundo)、胡枝子(Lespedeza bicolor)、花木蓝(Indigofera kirilowii)、青花椒(Zanthoxylum schinifolium)和野青茅(Deyeuxia arundinacea)5种优势植物根围土壤,研究不同林火强度对丛枝菌根(AM)真菌多样性的影响。结果表明,AM真菌侵染率和孢子密度随火灾强度的加强而降低;非过火区植物根围土壤中,分离鉴定出AM真菌3属11种,轻度过火区分离鉴定出AM真菌3属10种,中度过火区分离鉴定出AM真菌3属9种,重度过火区分离鉴定出AM真菌3属8种。过火区AM真菌种丰度低于非过火区。过火区和非过火区AM真菌的重要值和优势种不同,非过火区植物根围的优势种是地球囊霉(Glomus geosporum)、台湾球囊霉(G.taiwanensis)、分支巨孢囊霉(Gigaspora ramisporophora)、极大巨孢囊霉(Gi.gigantean)、福摩萨球囊霉(G.formosanum)、悬钩子球囊霉(G.rubiforme)、柯氏无梗囊霉(Acaulospora koskei)和松蜜无梗囊霉(A.thomii);轻度过火区植物根围的优势种是地球囊霉和台湾球囊霉;中度过火区的是台湾球囊霉和地球囊霉(野青茅除外);重度过火区植物根围的优势种是地球囊霉。不同强度的过火区对AM真菌群落组成有不同程度的影响。认为林火降低植物根围土壤中AM真菌多样性。  相似文献   

17.
球囊霉素相关土壤蛋白(glomalin-related soil protein, GRSP)在土壤物理结构调节和土壤碳库稳定性中发挥着重要作用,但植物多样性和优势种如何影响GRSP还缺乏系统性研究。本研究依托东北林业大学哈尔滨实验林场的72块样地, 对1 m深土壤剖面分5层采样, 测定土壤易提取球囊霉素(easily extractable GRSP, EEG)、总提取球囊霉素(total GRSP, TG)及土壤理化性质, 并同时计算植物多样性指数及优势种重要值(importance value, IV), 进一步通过相关分析和冗余排序分析判断影响GRSP的主要因素与贡献。结果表明: (1)在整个土壤剖面上均表现为TG和EEG与土壤有机碳(SOC)正相关, 在部分土层深度与全氮(total nitrogen, TN)和含水量(moisture content, MC)正相关, 而与电导率(electrical conductivity, EC)和pH值负相关。(2)部分土层TG和EEG与黑皮油松(Pinus tabuliformis var. mukdensis)、樟子松(P. sylvestris var. mongolica)、胡桃楸(Juglans mandshurica)、黄檗(Phellodendron amurense)、榆树(Ulmus pumila)优势种重要值显著相关, 表现为黑皮油松重要值越高, 而黄檗、榆树重要值越小, 越有利于EEG的积累, 并且伴随EEG-C/SOC (EEG中C占SOC比例)增加、EEG/TG增大; 群落中胡桃楸、黄檗、榆树更有利于TG积累, 黑皮油松、落叶松(Larix gmelinii)、樟子松不利于TG的积累。(3)植物Simpson指数、Shannon-Wiener指数、物种丰富度与EEG、TG、EEG/TG无显著相关性, 而与EEG-C/SOC、EEG-N/TN (EEG中N占TN的比例)、TG-C/SOC (TG中C占SOC比例)、TG-N/TN (TG中N占TN的比例)显著负相关; 土壤EEG/TG和EEG-N/TN与植物均匀度指数显著正相关, 在1 m土壤不同土层趋势类似。(4)方差分解分析表明: 生物因子对GRSP变化的解释率是20.2%, 土壤理化因子解释率为7.8%, 而生物因子中植物优势种重要值的解释率最大(16.4%), 而植物物种多样性指数解释率仅为0.4%。冗余排序发现常绿针叶树种(黑皮油松和樟子松)越多且阔叶树种越少时, GRSP含量和GRSP对土壤碳氮的贡献越高(P < 0.01), 其机制可能与树种菌根类型有关: 外生菌根树种重要值与TG显著负相关, 丛枝菌根树种重要值与TG显著正相关。本研究解析了植物物种多样性对GRSP含量的重要影响, 并强调未来土壤管理和评估可以通过调整优势物种而不是树种多样性来促进GRSP积累。  相似文献   

18.
为了深入认识二代野猪放牧对夹金山针阔混交林物种多样性特征和土壤理化性质的影响,以便为该区域针阔混交林的生态稳定性维持以及科学放牧提供参考,该研究在全面踏查的基础上,根据牧道数量、面积、野猪行为特征及活动范围划分4种放牧干扰强度(由强到弱依次为I、II、III、IV),并设置无干扰状态作为对照(CK),探讨不同放牧干扰强度对物种多样性和土壤理化性质的影响以及二者之间的作用关系。主要结果:(1)共记录到维管植物172种,隶属于55科117属,轻度干扰(IV)下乔灌草的科、属、种数目均达到最高。(2)乔灌草3层多样性指数对干扰强度的响应基本一致,IV级干扰下丰富度指数(S)、Shannon多样性指数(H′)和Simpson优势度指数(D)达到最大,高于CK,随干扰增强多样性水平均趋下降;各干扰强度间Pielou均匀度指数(E)差异不显著。(3)相比于CK,野猪放牧致使土壤含水量、最大含水量、全氮含量下降,放牧压力越大,下降比例越大;土壤孔隙度、全磷、速效磷、有机质含量在IV级干扰时有所增加, I–III级干扰下明显削减;土壤密度随干扰增强而增大。(4)冗余分析结果表明:土壤有机质含量、速效磷...  相似文献   

19.
Abstract.  1. Habitat loss and fragmentation are the main causes of changes in the distribution and abundance of organisms, and are usually considered to negatively affect the abundance and species richness of organisms in a landscape. Nevertheless, habitat loss and fragmentation have often been confused, and the reported negative effects may only be the result of habitat loss alone, with habitat fragmentation having nil or even positive effects on abundance and species richness.
2. Manipulated alfalfa micro-landscapes and coccinellids (Coleoptera: Coccinellidae) are used to test the effects habitat loss (0% or 84%), fragmentation (4 or 16 fragments), and isolation (2 or 6 m between fragments) on the density, species richness, and distribution of native and exotic species of coccinellids.
3. Generally, when considering only the individuals in the remaining fragments, habitat loss had variable effects while habitat fragmentation had a positive effect on the density of two species of coccinellids and on species richness, but did not affect two other species. Isolation usually had no effect. When individuals in the whole landscape were considered, negative effects of habitat loss became apparent for most species, but the positive effects of fragmentation remained only for one species.
4. Native and exotic species of coccinellids did not segregate in the different landscapes, and strong positive associations were found most often in landscapes with higher fragmentation and isolation.
5. The opposing effects of habitat loss and fragmentation may result in a nil global effect; therefore it is important to separate their effects when studying populations in fragmented landscapes.  相似文献   

20.

Questions

Near-ground temperatures can vary substantially over relatively short distances, enabling species with different temperature preferences and geographical distributions to co-exist within a small area. In a forest landscape, the near-ground temperatures may change due to management activities that alter forest density. As a result of such management activities, current species distributions and performances might not only be affected by current microclimates, but also by past conditions due to time-lagged responses.

Location

Sweden.

Methods

We examined the effects of past and current microclimates on the distributions and performances of two northern, cold-favoured, and two southern, warm-favoured, plant species in 53 managed forest sites. Each pair was represented by one vascular plant and one bryophyte species. We used temperature logger data and predictions from microclimate models based on changes in basal area to relate patterns of occurrence, abundance, and reproduction to current and past microclimate.

Results

The two northern species were generally favoured by microclimates that were currently cold, characterised by later snowmelt and low accumulated heat over the growing season. In contrast, the two southern species were generally favoured by currently warm microclimates, characterised by high accumulated heat over the growing season. Species generally had higher abundance in sites with a preferred microclimate both in the past and present, and lower abundance than expected from current conditions, if the past microclimate had changed from warm to cold or vice versa, indicating time-lags in abundance patterns of the species.

Conclusions

Our results show a potential importance of past and present microclimate heterogeneity for the co-existence of species with different temperature preferences in the same landscape and highlight the possibility to manage microclimates to mitigate climate change impacts on forest biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号