首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: Is it possible to mathematically classify relevés into vegetation types on the basis of their average indicator values, including the uncertainty of the classification? Location: The Netherlands. Method: A large relevé database was used to develop a method for predicting vegetation types based on indicator values. First, each relevé was classified into a phytosociological association on the basis of its species composition. Additionally, mean indicator values for moisture, nutrients and acidity were computed for each relevé. Thus, the position of each classified relevé was obtained in a three‐dimensional space of indicator values. Fitting the data to so called Gaussian Mixture Models yielded densities of associations as a function of indicator values. Finally, these density functions were used to predict the Bayesian occurrence probabilities of associations for known indicator values. Validation of predictions was performed by using a randomly chosen half of the database for the calibration of densities and the other half for the validation of predicted associations. Results and Conclusions: With indicator values, most reléves were classified correctly into vegetation types at the association level. This was shown using confusion matrices that relate (1) the number of relevés classified into associations based on species composition to (2) those based on indicator values. Misclassified relevés belonged to ecologically similar associations. The method seems very suitable for predictive vegetation models.  相似文献   

2.
Abstract. The relationship between mean Ellenberg indicator values (IV) per vegetation relevé and environmental parameters measured in the field usually shows a large variation. We tested the hypothesis that this variation is caused by bias dependent on the phytosociological class. For this purpose we collected data containing vegetation relevés and measured soil pH (3631 records) or mean spring groundwater level (MSL, 1600 records). The relevés were assigned to vegetation types by an automated procedure. Regression of the mean indicator values for acidity on soil pH and the mean indicator values for moisture on MSL gave percentages explained variance similar to values that were reported earlier in literature. When the phytosociological class was added as an explanatory factor the explained variance increased considerably. Regression lines per vegetation type were estimated, many of which were significantly different from each other. In most cases the intercepts were different, but in some cases their slopes differed as well. The results show that Ellenberg indicator values for acidity and moisture appear to be biased towards the values that experts expect for the various phytosociological classes. On the basis of the results, we advise to use Ellenberg IVs only for comparison within the same vegetation type.  相似文献   

3.
Abstract. Two sets of 40 relevés, made independently by two observers on the same 5m x 5m sample plots, were compared to estimate the sampling error and to assess the effect of this sampling error on (1) estimates of species richness and diversity (2) results of multivariate analyses, and (3) estimation of species turnover in repeated sampling. The relevés were made according to the standard Braun-Blanquet method. The sampling error was estimated for (1) recording of species in sample plots and (2) visual estimation of the degree of cover (or of the general population size). Despite the fact that the sample plots were searched thoroughly for 30 - 40 min, the number of overlooked species was high with a discrepancy of 13% between corresponding relevés. Regarding multivariate analysis, the error caused by missing species was at least as important as the error in visual estimation of species cover. The estimates of degree of cover using the Braun-Blanquet scale are sufficiently reliable for use in multivariate analysis when they are subjected to ordinal transformation. When average cover values are used, the patterns detected are based solely on dominants. Species richness and species diversity could be reliably estimated from the relevés, but the estimates of equitability are very unreliable. The classical relevé method remains one of the most efficient survey methods for recognition of vegetation types on the macro-community and landscape scales.  相似文献   

4.
Question: Species optima or indicator values are frequently used to predict environmental variables from species composition. The present study focuses on the question whether predictions can be improved by using species environmental amplitudes instead of single values representing species optima. Location: Semi‐natural, deciduous hardwood forests of northwestern Germany. Methods: Based on a data set of 558 relevés, species responses (presence/absence) to pH were modelled with Huisman‐Olff‐Fresco (HOF) regression models. Species amplitudes were derived from response curves using three different methods. To predict the pH from vegetation, a maximum amplitude overlap method was applied. For comparison, predictions resulting from several established methods, i. e. maximum likelihood/present and absent species, maximum likelihood/present species only, mean weighted averages and mean Ellenberg indicator values were calculated. The predictive success (squared Pearson's r and root mean square error of prediction) was evaluated using an independent data set of 151 relevés. Results: Predictions based upon amplitudes defined by maximum Cohen's x probability threshold yield the best results of all amplitude definitions (R2= 0.75, RMSEP = 0.52). Provided there is an even distribution of the environmental variable, amplitudes defined by predicted probability exceeding prevalence are also suitable (R2= 0.76, RMSEP = 0.55). The prediction success is comparable to maximum likelihood (present species only) and – after rescaling – to mean weighted averages. Predicted values show a good linearity to observed pH values as opposed to a curvilinear relationship of mean Ellenberg indicator values. Transformation or rescaling of the predicted values is not required. Conclusions: Species amplitudes given by a minimum and maximum boundary for each species can be used to efficiently predict environmental variables from species composition. The predictive success is superior to mean Ellenberg indicator values and comparable to mean indicator values based on species weighted averages.  相似文献   

5.
Abstract. A case study is presented on the statistical analysis and interpretation of vegetation change in a wetland subjected to water extraction and acidification, without precise information on the environmental changes. The vegetation is a Junco-Molinion grassland and the changes in vegetation are evaluated on the basis of relevés in 1977 and 1988 of 20 plots in a small nature reserve on moist oligotrophic, Pleistocene sands in the Netherlands. The changes are attributed to water extraction (since 1972) and soil acidification and the effect of the environmental changes on the vegetation is inferred from data on water depth and acidity collected in 1988. Many species typical of wetlands decreased in abundance, including rare species such as Parnassia palustris, Selinum carvifolia and Ophioglossum vulgatum. Some species increased, notably Anthoxanthum odoratum, Holcus lanatus and Plantago lanceolata. A significant decrease was found in the mean Ellenberg indicator values for moisture and acidity. The mean indicator value for nutrients did not change significantly. Multivariate analysis of the species data by Redundancy Analysis demonstrated the overall significance of the change in species composition between 1977 and 1988 (P < 0.01, Monte Carlo permutation). The spatial and temporal variation in the species data was displayed in ordination diagrams and interpreted in terms of water depth and pH. A simple model is developed to infer the change in water depth and pH from the relevé data and recent data on water depth and pH. Because the correlation between water depth and pH made a joint estimation of the changes useless, the change in pH was estimated for a series of likely changes in water depth. For the most likely change in water depth, significant acidification was inferred from the change in vegetation. The model is more generally applicable as a constrained calibration method.  相似文献   

6.
Abstract. This study explored the validity of three responses of vegetation to increased soil erosion: reduction of vegetation cover, number of species and reduced substitution of species. 201 relevés, including edaphic and geomorphological data, were surveyed in the intensely eroded Eocene marls of the Prepyrenees (NE Spain). Changes in plant species’ presence in relevés from different degradation stages were compared. The level of vegetation degradation was defined as the total phanerogam cover which, in the studied area, was correlated to the degree of soil erosion. The considered trends were validated. Reduction of phanerogam cover and species number were gradual from low to high‐eroded areas. Vegetation degradation explained 48% of the species number variance. In the later stages of degradation a significant substitution of species was not observed, only a lower frequency of occurrence of several species that appeared in the whole set of relevés. Through the process of degradation, 47% of species displayed significantly reduced frequencies as degradation increased, none showed a significant increase in frequency. It is concluded that there are no characteristic species in these plant communities that survive in the severely eroded marls. Among the few species that had increased in frequency, most only colonised favourable micro‐environments.  相似文献   

7.
Question: Are there effects of long‐term deposition of airborne nitrogen and sulphur on the forest floor vegetation from permanent plots collected in 1993 compared to 2005. Location: Northern limestone Alps in Austria. Methods: Single species responses were analysed by correlating trends in cover‐abundance values, as derived from marginal models, with Ellenberg indicator values. Changes in the species composition of plots were analysed by correlating changes in mean Ellenberg indicator values with the displacement of plots within a multidimensional scaling ordination. Results: Trends in single species abundance were positively correlated with indicator values of soil pH but were independent of nutrient availability. A general trend towards the homogenisation of vegetation, due to convergent time vectors of the relevés, became obvious. Oligotrophic sites previously situated at the distal ends of ordination axes shifted towards the centre since they were enriched by species preferring mesotrophic conditions. The bulk of plots with intermediate site conditions hardly showed any trends. A concomitant analysis demonstrated that temporal changes in species composition exceed the variation in cover abundance estimates among different field botanists. Conclusions: N deposition can lead to a homogenisation of forest floor vegetation. Larger limestone areas with diverse soil conditions, such as the Northern limestone Alps in Austria, as a whole are thus negatively affected by airborne N deposition. Nevertheless, the vegetation was at least as strongly affected by an increase of basiphilous species as a result of decreasing S deposition.  相似文献   

8.
Abstract. Large phytosociological data sets of three types of grassland and three types of forest vegetation from the Czech Republic were analysed with a focus on plot size used in phytosociological sampling and on the species‐area relationship. The data sets included 12975 relevés, sampled by different authors in different parts of the country between 1922 and 1999. It was shown that in the grassland data sets, the relevés sampled before the 1960s tended to have a larger plot size than the relevés made later on. No temporal variation in plot sizes used was detected in forest relevés. Species‐area curves fitted to the data showed unnatural shapes, with levelling‐off or even decrease in plot sizes higher than average. This distortion is explained by the subjective, preferential method of field sampling used in phytosociology. When making relevés in species‐poor vegetation, researchers probably tend to use larger plots in order to include more species. The reason for this may be that a higher number of species gives a higher probability of including presumed diagnostic species, so that the relevé can be more easily classified in the Braun‐Blanquet classification system. This attitude of phytosociologists has at least two consequences: (1) in phytosociological data bases species‐poor vegetation types are underrepresented or relevés are artificially biased towards higher species richness; (2) the suitability of phytosociological data for species richness estimation is severely limited.  相似文献   

9.
Question: What was the change in diversity of urban synantropic vegetation in a medium‐sized Central European city during the period of increasing urbanization (1960s‐1990s)? Location: The city of Plzeň, an industrial centre of the western part of the Czech Republic. Methods: Sampling of various types of synanthropic vegetation, conducted in the 1960s, was repeated by using the same methods in the 1990s. This yielded 959 relevés, of which 623 were made in the 1960s and 336 in the 1990s. The relevés were assigned to the following phytosociological classes: Chenopodietea, Artemisietea vulgaris, Galio‐Urticetea, Agropyretea repentis and Plantaginetea majoris. Total number of vascular plant species, evenness index J, number of alien species (classified into archaeophytes and neophytes), and mean Ellenberg indicator values for light, temperature, continentality, moisture, soil reaction, and nutrients were obtained for each relevé. Results: From 1960s to 1990s, there was a significant decrease of species richness and diversity in synanthropic vegetation. The proportion of archaeophytes decreased in most vegetation types, indicating the contribution of this group of species, often confined to specific rural‐like habitats, to the observed impoverishment of ruderal vegetation. The proportion of neophytes did not change between the two periods. Comparison between 1960s and 1990s indicated a decrease in light, temperature, moisture, soil reaction and nutrient indicator values in some vegetation types. In both periods, Artemisieta, Galio‐Urticetea and Chenopodietea formed a distinct group harbouring more species than Agropyretea and Plantaginetea. Neophytes, i.e. recently introduced species, were most represented in the early successional annual vegetation of Chenopodietea, rather than in perennial vegetation of the other classes. Conclusions: Synanthropic vegetation of Plzeň exhibited a general trend of decrease in species diversity.  相似文献   

10.
Understanding how land‐use changes affect different facets of plant biodiversity in seminatural European grasslands is of particular importance for biodiversity conservation. As conclusions of previous experimental or synchronic observational studies did not converge toward a general agreement, assessing the recent trends in vegetation change in various grassland systems using a diachronic approach is needed. In this resurvey study, we investigated the recent changes in grassland vegetation of the French Jura Mountains, a region with a long tradition of pastoralism. We compared the floristic composition of 150 grassland plots recorded between 1990 and 2000 with new relevés made in 2012 on the same plots. We considered taxonomic, phylogenetic and functional diversity as well as ecological characteristics of the plant communities derived from ecological indicator values and life strategies of the species. PCA of the floristic composition revealed a significant general trend linked to the sampling year. Wilcoxon paired tests showed that contemporary communities were generally more dominated by grass species and presented a higher tolerance to defoliation, a higher pastoral value, and a higher nutrient indicator value. Comparisons revealed a decrease in phylogenetic and functional diversity. By contrast, local species richness has slightly increased. The intensity of change in species composition, measured by Hellinger distance between pairs of relevés, was dependent on neither the time lag between the two surveys, the author of the first relevé nor its location or elevation. The most important changes were observed in grasslands that previously presented low pastoral value, low grass cover, low tolerance to defoliation, and high proportion of stress‐tolerant species. This trend was likely linked to the intensification of grassland management reported in the region, with a parallel increase in mowing frequency, grazing pressure, and fertilization level. More restrictive specifications should be applied to agricultural practices to avoid overexploitation of mountain species‐rich grasslands and its negative consequences on their biodiversity and resilience.  相似文献   

11.
Construction of potential natural vegetation (PNV) poses particular challenges in landscapes heavily altered by human activity and must be based on transparent, repeatable methods. We integrated the concept of ancient forest (AF) and ancient forest species (AFS) into a four-step procedure of PNV mapping: 1) classification of forest vegetation relevés; 2) selection of those vegetation types that can serve as PNV units, based on AF and AFS; 3) merging of selected vegetation types into five PNV units that can be predicted from a digital morphogenetic soil map; 4) mapping of three additional PNV units based on additional environmental data. The second step, concerning the selection of reference forest vegetation, is of particular interest for PNV construction in Flanders (northern Belgium), where forest cover has been subject to temporal disruption and spatial fragmentation. Among the variety of extant forest recovery states, we chose as PNV units those vegetation types for which a high proportion of relevés had been located in AF and that contained many AFS. As the frequency of AFS depends on site conditions, we only compared and selected vegetation types that are found on similar sites according to average Ellenberg indicator values. While succession is irrelevant for the definition of PNV, colonization rates of AFS can be used to estimate the time required for PNV to be restored in a site.  相似文献   

12.
Abstract. Ellenberg indicator values for moisture, nitrogen and soil reaction were correlated with measured soil and vegetation parameters. Relationships were studied through between‐species and between‐site comparisons, using data from 74 roadside plots in 14 different plant communities in The Netherlands forming a wide range. Ellenberg moisture values correlated best with the average lowest moisture contents in summer. Correlations with the annual average groundwater level and the average spring level were also good. Ellenberg N‐values appeared to be only weakly correlated with soil parameters, including N‐mineralization and available mineral N. Instead, there was a strong relation with biomass production. We therefore endorse Hill & Carey's (1997) suggestion that the term N‐values be replaced by ‘productivity values'. For soil reaction, many species values appeared to need regional adjustment. The relationship with soil pH was unsatisfactory; mean indicator values were similar for all sites at pH > 4.75 because of wide species tolerances for intermediate pH levels. Site mean reaction values correlated best (r up to 0.92) with the total amount of calcium (exchangeable Ca2+ plus Ca from carbonates). It is therefore suggested that reaction values are better referred to as ‘calcium values'. Using abundance values as weights when calculating mean indicator values generally improved the results, but, over the wide range of conditions studied, differences were small. Indicator values for bryophytes appeared well in line with those for vascular plants. It was noted that the frequency distributions of indicator values are quite uneven. This creates a tendency for site mean values to converge to the value most common in the regional species pool. Although the effect on overall correlations is small, relationships tended to be less linear. Uneven distributions also cause the site mean indicator values at which species have their optimum to deviate from the actual Ellenberg values of these species. Suggestions for improvements are made. It is concluded that the Ellenberg indicator system provides a very valuable tool for habitat calibration, provided the appropriate parameters are considered.  相似文献   

13.
Questions: Does fuzzy clustering provide an appropriate numerical framework to manage vegetation classifications? What is the best fuzzy clustering method to achieve this? Material: We used 531 relevés from Catalonia (Spain), belonging to two syntaxonomic alliances of mesophytic and xerophytic montane pastures, and originally classified by experts into nine and 13 associations, respectively. Methods: We compared the performance of fuzzy C‐means (FCM), noise clustering (NC) and possibilistic C‐means (PCM) on four different management tasks: (1) assigning new relevé data to existing types; (2) updating types incorporating new data; (3) defining new types with unclassified relevés; and (4) reviewing traditional vegetation classifications. Results: As fuzzy classifiers, FCM fails to indicate when a given relevé does not belong to any of the existing types; NC might leave too many relevés unclassified; and PCM membership values cannot be compared. As unsupervised clustering methods, FCM is more sensitive than NC to transitional relevés and therefore produces fuzzier classifications. PCM looks for dense regions in the space of species composition, but these are scarce when vegetation data contain many transitional relevés. Conclusions: All three models have advantages and disadvantages, although the NC model may be a good compromise between the restricted FCM model and the robust but impractical PCM model. In our opinion, fuzzy clustering might provide a suitable framework to manage vegetation classifications using a consistent operational definition of vegetation type. Regardless of the framework chosen, national/regional vegetation classification panels should promote methodological standards for classification practices with numerical tools.  相似文献   

14.
Hédl  Radim 《Plant Ecology》2004,170(2):243-265
From 1941–;1944 nearly 30 phytosociological relevés were completed by F. K. Hartmann in the Rychlebské Mountains, a typical mountainous area in northeastern Czech Republic. Of the original plots still covered with adult grown beech (Fagus sylvatica) forest, 22 were resampled in 1998 and 1999. In order to describe the recent vegetation variability of the sites 57 relevés were recorded. Changes in vegetation were estimated using relative changes in species density and ordinations (PCA, RDA). Environmental changes were assessed using Ellenberg indicator values when no direct measurements were available. A decline in species diversity has been documented, particularly, many species occurring frequently in deciduous forests with nutrient and moisture well-supplied soils around neutral have decreased. In contrast, several light-demanding, acid- and soil desiccation-tolerant species have increased. Natural succession, quantified as forest age, contributed slightly to these changes. In Ellenberg indicator values, a decline in F (soil moisture), R (soil calcium) and N (ecosystem productivity), and an increase in L (understorey light) were shown. This is interpreted as the influence of modified forestry management and of airborne pollutants. Intensified logging caused the canopy to open and soil conditions to worsen. The latter is most likely also due to acid leaching of soil cations (Ca, K, Na). This caused a decline in soil productivity, thus the effect of nitrification could not be detected. The original relevés may have differed in size influencing the results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
A recent analysis published in this journal found different relationships between mean Ellenberg indicator values and environmental measurements in different vegetation types. The cause was stated as bias in mean Ellenberg values between relevés which in turn suggested to reflect a bias in individual Ellenberg values. We discuss two phenomena that could explain these results without the need to invoke bias in either individual or mean Ellenberg values. Firstly, slopes of linear regression lines underestimate true relationships when analyses involve explanatory variables measured with error. Secondly, syntaxon‐specific distributions of Ellenberg values follow from the floristic definition of phytosociological units. Mean Ellenberg values per relevé therefore carry the stamp of their associated syntaxon even though associated abiotic conditions may vary between relevés. This will lead to variation in slopes and intercepts between vegetation types not because of bias in individual Ellenberg values but because of prescribed bias in the distribution of Ellenberg values between syntaxa. The residual variation in calibrations carried out across vegetation types is undoubtedly reduced by introducing vegetation type as a factor. However users should note that this is unlikely to reflect bias in individual Ellenberg values but is more likely to reflect error in environmental measurements as well the constraint imposed by phytosociological classification.  相似文献   

16.
The large, comprehensive vegetation database of Mecklenburg-Vorpommern/NE Germany with 51,328 relevés allowed us to study an entire regional flora of 133 non-native plants (NNP, immigration after 1492 AD) with regard to their preferences to all kinds of habitats and along different ecological gradients. For each relevé, we computed average Ellenberg indicator values (EIV) for temperature, light, moisture, reaction, nutrients and salt as well as plant strategy type weights. We partitioned the dataset into relevés with and without occurrences of NNP and compared them with respect to the relative frequencies of EIVs and strategy type weights. We identified deviations from random differences by testing against permuted indicator values. To account for bias in EIV between community types, NNP preferences were differentiated for 34 phytosociological classes. We tested significance of preferences for the group of NNP as a whole, as well as for single NNP species within the entire dataset, as well as differentiated by phytosociological classes and formations. NNP as a group prefer communities with high EIVs for temperature and nutrients and low EIVs for moisture. They avoid communities with low EIV for reaction and high EIV for salt. NNP prefer communities with high proportions of ruderal and low proportion of stress strategists. The differentiation by phytosociological classes reinforces the general trends for temperature, nutrients, moisture, R and S strategy types. Nevertheless, preferences of single species reveal that NNP are not a congruent group but show individualistic ecological preferences.  相似文献   

17.
Abstract. The program JUICE was designed as a Microsoft® WINDOWS® application for editing, classification and analysis of large phytosociological tables and databases. This software, with a current maximum capacity of 30 000 relevés in one table, includes many functions for easy manipulation of table and header data. Various options include classification using COCKTAIL and TWINSPAN methods, calculation of interspecific associations, fidelity measures, average Ellenberg indicator values, preparation of synoptic tables, automatic sorting of relevé tables, and export of table data into other applications (word processors, spreadsheet programs or mapping packages). JUICE is optimized for use in association with TURBOVEG which is the most widespread database program for storing phytosociological data in Europe.  相似文献   

18.
19.
Abstract

We numerically analysed 154 relevés of Potentillo chrysocraspedae–Festucetum airoidis in order to review the compositional variability of these grasslands, the main eco-floristic gradients and the representativeness of the lectotype. Apart from 30 small-sized clusters composed of singular or transitional relevés (outliers), three distinctive groups of 77, 19 and 12 communities were finally retained and denominated as typical (TP), closed (CL) and open (OP) facies, as they were significantly different in terms of total species cover. The three facies are well separated but do not form distinctive clusters in the non-metric multidimensional scaling (NMDS) ordination space. Juncus trifidus and Agrostis rupestris are the best differential species of OP and TP, respectively, whereas the best discriminator of CL is the higher cover of F. airoides. There are no significant differences between the three facies regarding altitude. The floristic structure of CL indicates poorer but moister soils compared with the other facies. CL may represent either a post-disturbance, recovery phase following sheep overgrazing and intensive trampling, or a late seral stage. OP gathers communities that are little disturbed and mainly occur on ridges and upper, sunny slopes. Although well distinguished floristically, TP is weakly defined in terms of homotoneity and complexity of the core species assemblage. The most representative relevé of TP is poorer in character species than the relevé lectotype (5 versus 12), the latter being classified as an outlier in terms of normal specific assemblage. Such patterns may reflect the spatio-temporal heterogeneity in alpine grasslands due to uncontrolled, intensive grazing and stochastic natural disturbances.  相似文献   

20.
Ertsen  A. C. D.  Alkemade  J. R. M.  Wassen  M. J. 《Plant Ecology》1998,135(1):113-124
A general calibration of Ellenberg indicator values for moisture, acidity, nutrient availability and salinity was carried out on a large database of relevées and environmental variables from a variety of ecosystems in the Netherlands.Satisfying relationships with Ellenberg indicator values for moisture, acidity and salinity were found for mean groundwater level in spring time, soil pH and chloride concentration in groundwater. For mean groundwater level in spring and chloride concentration in groundwater subdivision of the database led to clearer relationships with indicator values. For the Ellenberg indicator value for nutrient availability satisfying calibration results were only achieved with data on standing crops and N stock in standing crop. The relationship with soil chemical variables was less clear.Although the correlation between indicator and measured values is obvious, the variation around the regression lines is considerable. However, because of the size and composition of the database, it is unlikely that our calibration results can be much improved by adding more (Dutch) data.The calibration results will be applied in the multi-stress model SMART-MOVE, developed to predict changes in species composition due to acidification, eutrophication and the effects of lowering groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号