首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract. The concept of mapping potential replacement vegetation (PRV) is proposed as a parallel to potential natural vegetation (PNV). Potential replacement vegetation (PRV) is an abstract and hypothetical vegetation which is in balance with climatic and soil factors currently affecting a given habitat, with environmental factors influencing the habitat from outside such as air pollution, and with an abstract anthropogenic influence (management) of given type, frequency and intensity. For every habitat, there is a series of possible PRV-types corresponding to the different anthropogenic influences, e.g. grazing, mowing, trampling or growing cereals. The PRV-concept is especially useful in large-scale mapping (scales > 1 : 25 000) of small areas where replacement vegetation is the focus of attention for managers and land-use planners, for example in nature reserves where the aim is conservation of replacement vegetation managed in a traditional way, or in restoration ecology where the concept may be used for defining restoration goals and evaluating the success of restoration efforts. At smaller scales, PRV-mapping may be useful for revealing the biogeographical patterns of larger areas which may be different from the corresponding PNV patterns, because replacement vegetation and natural vegetation may respond to environmental gradients at different scales. An example of medium-scale PRV-mapping through the coincidence of diagnostic species of vegetation types, based on species distribution grid data, is presented. In cultural landscapes, the advantage of using the PRV-concept instead of PNV is its direct relationship to the replacement vegetation. In the habitat mapping with respect to the replacement vegetation, the PRV concept yields more valuable results than the mapping of actual vegetation, as the latter is strongly affected by spatially variable anthropogenic influences which may be largely independent from climatic and soil factors.  相似文献   

2.
Question: Which factors determine diversity of native and alien vascular plant species in semi‐natural dry grasslands? Location: Northern limestone Alps to the southern rim of the Bohemian massif in northern Austria. Methods: In 70 randomly chosen dry grassland patches (0.008 ha ‐ 7 ha) we sampled a complete inventory of vascular plant species at each site. We analysed the correlation between species diversity of natives, archaeophytes (pre‐1500 aliens) and neophytes (post‐1500 aliens). We used GLM to study the relationship of species number (natives, neophytes, archaeophytes) to five explanatory variables (altitude, within habitat diversity, habitat diversity of adjacent areas, within land‐use diversity and land‐use in adjacent areas). Orthogonal components of these variables were derived with a PCA and used in the models. We also tested the influence of minimum residence time (MRT) and the covariables origin, mode of introduction and life form on the number of grassland sites with neophytes with analogous GLMs. Results: Native species diversity species was positively correlated with the species diversity of new, but not old invaders. GLM explains 70% of the variance in the number of native species. Patch size explained the largest part of the variation in the number of native species. PCA axes 1 and 3 were significantly related to the number of native species. Axis 1was related to on‐site habitat and land‐use diversity. The GLM of the archaeophyte diversity explains 18% of the variance. Altitude and presence of fields and grassland in the neighbourhood mainly explained archaeophyte species diversity. The GLM of neophyte diversity explains 12% of the variance. The number of neophytes was positively related to that of archaeophytes. Only PCA axis 3, which is mainly influenced by adjacent land‐use types, showed a relationship with neophytes. MRT, mode of introduction and region of origin (but not life form) were significantly related to the number of grassland sites invaded by neophytes, explaining 35% of the variance. Conclusion: Most factors governing native species diversity are not significantly related to alien species diversity. Additional determinants of the local scale diversity of alien species exist such as region of origin and historical factors (MRT, mode of introduction).  相似文献   

3.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

4.
Abstract. Integrated synusial phytosociology combined with traditional measures of diversity is used to describe the structure of vascular vegetation diversity along the forested riparian landscape of the upper Oise valley (Belgium and France). The two dimensions (longitudinal and lateral) of the geomorphological complex are examined at four scales: synusia, phytocoenosis, tesela and catena. The results support the following hypotheses: (1) the environmental gradients observed, particularly the lateral ones, are very complex; (2) there is a clear lack of coupling between the tree, shrub and herb layers, which indicates a differential response to the underlying influence of environmental controls; (3) moderate flooding‐induced disturbance enhances herb species richness; (4) stressful environments support a low plant species diversity but a high synusial richness; (5) natural factors (substrate, climate, disturbance) are more important at the synusia and phytocoenose scales, but (6) anthropogenic disturbances, mainly through forest and river management, are more important at the landscape level. By considering plant communities as structural‐dynamic entities of ecosystems in a landscape context, integrated synusial phytosociology provides a basis for decomposing a complex system since the different hierarchical levels are both nested and thus strongly relational and process‐based.  相似文献   

5.
Abstract. The nutrient status was studied in permanent plots of four plant communities, two rich-fen communities and two wooded grassland communities, all formerly used for haymaking. The concentrations of N, P and K in plant material of dominant and subdominant species (above- and below-ground) were measured in plots experimentally scythed annually or biennially for two decades, and in plots unscythed for four decades. Three of the communities had an N:P ratio of 14 or less, indicating N-limitation; the most fertile grassland community had particularly low values for the N:P ratio (6–12), as did a majority of the species, including all tall-herb species. A species-rich community of fen-margin vegetation in the lowest productive rich fen, had an N: P ratio of 17–19 in the above-ground biomass, which indicates P-limitation of nutrients. Molinia caerulea and Thalictrum alpinum were found to be the vascular plants with the highest N:P ratio, indicating P-limitation of nutrients. Calculations of N:K and K:P ratios indicated possible K-limitation in the rich-fen communities, especially for Thalictrum alpinum, the species with the highest N:K value. No expected change from N- to P-limited growth was found; in contrast, a reduction in the N:P ratio was found in the annually scythed plots of the rich fens, suggesting that reduced biomass production is mainly a result of disturbance by scything. As expected, a reduction in the concentration of K was detected in the scythed plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号