首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background and Aims

The collection of field data on plant traits is time consuming and this makes it difficult to examine changing patterns of traits along large-scale climate gradients. The present study tests whether trait information derived from regional floras can be used in conjunction with pre-existing quadrat data on species presence to derive meaningful relationships between specific morphometric traits and climate.

Methods

Quadrat records were obtained for 867 species in 404 sites from northern China (38–49°N, 82–132°E) together with information on the presence/absence of key traits from floras. Bioclimate parameters for each site were calculated using the BIOME3 model. Principal component analysis and correlation analysis were conducted to determine the most important climate factors. The Akaike Information Criterion was used to select the best relationship between each trait and climate. Canonical correspondence analysis was used to explore the relationships between climate and trait occurrence.

Key Results

The changing abundance of life form, leaf type, phenology, photosynthetic pathway, leaf size and several other morphometric traits are determined by gradients in plant-available moisture (as measured by the ratio of actual to potential evapotranspiration: α), growing-season temperature (as measured by growing degree-days on a 0 ° base: GDD0) or a combination of these. Different plant functional types (PFTs, as defined by life form, leaf type and phenology) reach maximum abundance in distinct areas of this climate space: for example, evergreen trees occur in the coldest, wettest environments (GDD0 < 2500 °Cd, α > 0·38), and deciduous scale-leaved trees occur in drier, warmer environments than deciduous broad-leaved trees. Most leaf-level traits show similar relationships with climate independently of PFT: for example, leaf size in all PFTs increases as the environment becomes wetter and cooler. However, some traits (e.g. petiole length) display different relationships with climate in different PFTs.

Conclusions

Based on presence/absence species data and flora-based trait assignments, the present study demonstrates ecologically plausible trends in the occurrence of key plant traits along climate gradients in northern China. Life form, leaf type, phenology, photosynthetic pathway, leaf size and other key traits reflect climate. The success of these analyses opens the possibility of using quadrat- and flora-based trait analyses to examine climate–trait relationships in other regions of the world.  相似文献   

2.
Modulation of leaf economic traits and trait relationships by climate   总被引:12,自引:0,他引:12  
Aim Our aim was to quantify climatic influences on key leaf traits and relationships at the global scale. This knowledge provides insight into how plants have adapted to different environmental pressures, and will lead to better calibration of future vegetation–climate models. Location The data set represents vegetation from 175 sites around the world. Methods For more than 2500 vascular plant species, we compiled data on leaf mass per area (LMA), leaf life span (LL), nitrogen concentration (Nmass) and photosynthetic capacity (Amass). Site climate was described with several standard indices. Correlation and regression analyses were used for quantifying relationships between single leaf traits and climate. Standardized major axis (SMA) analyses were used for assessing the effect of climate on bivariate relationships between leaf traits. Principal components analysis (PCA) was used to summarize multidimensional trait variation. Results At hotter, drier and higher irradiance sites, (1) mean LMA and leaf N per area were higher; (2) average LL was shorter at a given LMA, or the increase in LL was less for a given increase in LMA (LL–LMA relationships became less positive); and (3) Amass was lower at a given Nmass, or the increase in Amass was less for a given increase in Nmass. Considering all traits simultaneously, 18% of variation along the principal multivariate trait axis was explained by climate. Main conclusions Trait‐shifts with climate were of sufficient magnitude to have major implications for plant dry mass and nutrient economics, and represent substantial selective pressures associated with adaptation to different climatic regimes.  相似文献   

3.
Objective: To identify the relative roles of climatic, edaphic and management factors in controlling the weighted mean traits of vegetation. Location: Eleven sites in Europe and one in Israel undergoing transitions in land use. Material and Methods: Standardised methods were used to collect information on species traits and attributes from plots covering a range of land uses at each site. This was combined with abundance data to create a plot × trait matrix. Variance partitioning was used to identify the relative roles of climate, soil and management on the weighted and unweighted mean traits of the vegetation in the full data set, and the data set divided into vegetative traits (including life‐form, clonality, defence and a range of leaf traits) and traits linked to regeneration via seeds (including seed mass, dispersal and pollination mechanism). Results: Variance partitioning of the full data set showed that climate (18.7%), explained more variance in the weighted mean traits of the vegetation than climate and soil together (9.2), soil (6.9) and management (6.1). There was a similar distribution of variance explained for both vegetative and regeneration via seed traits, although more variance was explained for the latter. This restricted set of climatic, edaphic and management variables could explain 45‐50% of the variance in the weighted mean traits of the vegetation between plots. There were only small differences between analyses of the weighted and unweighted data. Conclusions: Despite large variations in climate and soils between sites, there was still a separate and recognisable impact of management on the mean weighted traits of the vegetation. There was also a degree of shared variation between the three groups of factors, indicating that the response of plant traits to one group of factors may not be predictable because they may be modulated by their response to other groups.  相似文献   

4.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

5.
Abstract. Structural (density, height, basal area, above‐ground tree biomass, leaf area index) and functional (leaf phenology, growth rate, fine litter fall, leaf decomposition) traits were quantified in four mature forests of Nothofagus pumilio (lenga) along an altitudinal sequence in Tierra del Fuego, Argentina. Three erect forest stands at 220, 440 and 540m and a krummholz stand at 640 m a.s.l. were selected. Along the altitudinal sequence, stem density increased while DBH, height, biomass, leaf‐size and growth period, mean growth rate and decay rate decreased. Dead stems increased and basal area and fine‐litter fall decreased with an increase in elevation among erect forests, but these trends inverted at krummholz. We suggest that krummholz is not only a morphological response to the adverse climate but is also a life form with functional advantages.  相似文献   

6.
Emergence phenology has been shown to advance considerably in the past decades in many lepidopterans. Noctuid moths (Noctuidae) constitute a species‐rich family of lepidopterans with a large diversity of life history traits presumably driving climatic responsiveness. In our study we aim to assess the role of life‐history and ecological traits in climatic responsiveness of noctuid moths, whilst controlling for phylogenetic dependence. We used a long‐term dataset of European noctuid moths collected from a light‐trap in northeastern Hungary. As the study site is located at the intersection of several biogeographical zones harbouring a large number of noctuid moth species, our dataset provides a unique possibility to investigate the moths’ climatic sensitivity. To estimate the role of life‐history traits and ecological factors in driving lepidopterans’ response to climatic trends, we employed three proxies related to the species’ ecology (habitat affinity, food plant specialization and food type) and two robust types of life‐history traits (migration strategy and hibernation form). The degree of temporal shifts of various measures of emergence phenology was related to hibernation stage, food type and migration strategy. Large‐scale phylogenetic relatedness exerted little constraint in all models fitted on each measure of phenology. Our results imply that noctuid moths overwintering as adults exhibited greater degrees of phenological shifts than species hibernating as larvae or pupae. It implies that moths hibernating as adults are forced to suspend activity in our climate and the prolongation of autumn activity might be the result of increased plasticity in flight periods.  相似文献   

7.
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual‐ and trait‐based version of the DGVM LPJmL (Lund‐Potsdam‐Jena managed Land) called LPJmL‐ flexible individual traits (LPJmL‐FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL‐FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of Rubisco per leaf area (), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade‐offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade‐offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species‐rich center of the region with relatively low climatic variability. LPJmL‐FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.  相似文献   

8.
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole‐plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm‐temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade‐offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.  相似文献   

9.
高新月  戴君虎  陶泽兴 《生态学报》2022,42(24):10253-10263
植物物候是植物生活史中的重要性状,也是指示气候与自然环境变化的重要指标,现已成为全球变化领域的研究热点之一。传统物候研究多假设物候由气候因素决定,如气温、降水、光照等,并主要从植物物候的年际变化角度探讨了气候因素对物候特征的影响。然而,不同物种的物候存在较大差异表明植物物候还与自身生物学特性(如系统发育和功能性状)有关,但植物生物学特性如何影响植物物候仍缺乏深入研究。基于北京地区44种木本植物1965-2018年的展叶始期和开花始期观测资料,以展叶始期和开花始期的3类物候特征(平均物候期、物候对温度的响应敏感度和物候期的积温需求)为例,探究植物物候特征与系统发育和功能性状的关系。首先,利用系统发育信号Blomberg’s K和进化模型检验植物物候特征是否具有系统发育保守性,并通过系统发育信号表征曲线直观表达植物物候特征的进化模式;之后,利用广义估计方程分析植物生活型、传粉型与物候特征的关系,以揭示不同植物的资源利用方式及生存策略的差异。研究发现:(1)除展叶始期的温度敏感度外,其余物候特征的进化均受随机遗传漂变和自然选择力的共同作用,可推断物候特征具有系统发育保守性,即亲缘关系越近的物种物候特征越相似。(2)开花始期的系统发育信号强度比展叶始期更大,表明繁殖物候的系统发育可能比生长物候更保守。(3)植物展叶始期及其积温需求与生活型密切相关。灌木比乔木的展叶时间早、积温需求少。植物开花始期与传粉型相关,风媒植物开花显著早于虫媒植物。研究成果有助于深入理解物候变化的生物学机制,对于丰富物候学的理论研究有重要意义,同时对植物保护也具有重要的指导价值。  相似文献   

10.
Wildfire is an important ecological disturbance factor in most Mediterranean ecosystems. In the Mediterranean Basin, most shrub species can regenerate after fire by resprouting or seeding. Here, we hypothesize that post-fire regenerative syndromes may potentially co-vary with traits directly related to functional properties involved in resource use. Thus, seeders with a shorter life span and smaller size would have lower water-use efficiency (WUE) than re-sprouting species and would take up nutrients such as nitrogen from more superficial parts of the soil. To test this hypothesis, we compared leaf 13C and 15N signatures from 29 co-existing species with different post-fire regeneration strategies. We also considered life form as an additional explanatory variable of the differences between post-fire regenerative groups. Our data support the hypothesis that seeder species (which mostly evolved in the Quaternary under a Mediterranean climate) have lower WUE and less stomatal control than non-seeders (many of which evolved under different climatic conditions in the Tertiary) and consequently greater consumption of water per unit biomass. This would be related to their smaller life forms, which tend to have lower WUE and shorter life and leaf lifespan. Differences in 15N also support the hypothesis that resprouters have deeper root systems than non-resprouters. The study supports the hypothesis of an overlap between plant functional traits and plant attributes describing post-disturbance resilience.  相似文献   

11.
Plant Functional Traits Show Non-Linear Response to Grazing   总被引:1,自引:0,他引:1  
The trait-based approach aims to detect functional patterns in vegetation beyond specific sites or taxa. In most cases, plant traits are assumed to be linearly related to environmental gradients such as grazing intensity. To generalize results beyond specific sites, it is important to know to which extent environment-trait relationships are non-linear. Non-linearity can be a source of inconsistency among different studies according to length and studied portion of a gradient. In this study, we test if and to what extent traits relate non-linearly to a grazing gradient using data from a grassland-matorral interface in the Mediterranean rangeland of “La Crau” (SE France). Because quantification of grazing by itinerant sheep flocks is difficult, we use a marker plant, Phillyrea angustifolia, and several independent pasture indicators to estimate grazing intensity. First, we related traits to grazing using a multivariate three-table ordination method (RLQ), which assumes linear reactions of traits. To evaluate the importance of non-linearity, we applied generalized additive models (GAMs) to our data. This revealed that a third of traits studied here showed non-linear relationships to grazing. These non-linear responses cover a large spectrum including seed mass, life form, phenology dispersal- and leaf traits. The high part of non-linear relations compromises a general assumption of linear trait-environment relationships. Future works should therefore more often consider non-linear relationships using methods with no constraints on shape of response, e.g., GAM in the analysis of functional trait studies. In this way, non-linear relationships can reveal new aspects of species and community response to global change and deepen our understanding of trait-environment relations.  相似文献   

12.
Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as “adaptive” or not. Across many groups of plants, trait–climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an “economics spectrum” along which combinations of functional traits covary along a fast–slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic‐niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic‐niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait–climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.  相似文献   

13.
A central issue in plant evolutionary ecology is to understand how several coordinated suites of traits (i.e. traits syndrome) may be jointly selected within a single species. This study aims to describe patterns of variation and co‐variation of functional traits in a water‐stressed tree population and test their relationships with performance traits. Within a Mediterranean population of Fagus sylvatica experiencing recurrent summer droughts, we investigated the phenotypic variation of leaf unfolding phenology, leaf area (LA), leaf mass per area (LMA), leaf water content (LWC), water use efficiency (WUE) estimated by carbon isotopic discrimination (d13C), twig Huber‐value (HV: the stem cross‐section divided by the leaf area distal to the stem), wood density (WDens), and leaf nitrogen content (Nmass). First, a principal component analysis revealed that two main axes structured the phenotypic variability: the first axis opposed leaf unfolding earliness and LWC to LMA and WUE; the second axis opposed LA to HV. These two axes can be interpreted as the opposition of two strategies (water economy versus water uptake) at two distinct scales (leaf for the first axis and branches for the second axis). Second, we found that LMA, LA, leaf unfolding and LWC responded differently to competition intensity, while WUE, WDens and HV did not correlate with competition. Third, we found that all studied functional traits were related to growth and/or reproductive performance traits and that these relationships were frequently non‐linear, showing strong interactions between traits. By highlighting phenotypic clustering of functional traits involved in response to water stress and by evidencing antagonistic selection favouring intermediate trait values as well as trait combinations, our study brought new insights on how natural selection operates on plant functional traits in a stressful environment.  相似文献   

14.
Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade‐off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one‐way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area‐based LNC. Mass‐based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade‐off between traits associated with growth and resource conservation ‘strategies’ in relation to soil fertility. Precipitation but not temperature affected this trade‐off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate.  相似文献   

15.
16.
Most evidence for advances in phenology of in response to recent climate warming in wild vertebrate populations has come from long‐term studies of birds. Few studies have either documented phenological advances or tested their climatic causes and demographic consequences in wild mammal systems. Using a long‐term study of red deer on the Isle of Rum, Scotland, we present evidence of significant temporal trends in six phenological traits: oestrus date and parturition date in females, and antler cast date, antler clean date, rut start date and rut end date in males. These traits advanced by between 5 and 12 days across a 28‐year study period. Local climate measures associated with plant growth in spring and summer (growing degree days) increased significantly over time and explained a significant amount of variation in all six phenological traits, largely accounting for temporal advances observed in some of the traits. However, there was no evidence for temporal changes in key female reproductive performance traits (offspring birth weight and offspring survival) in this population, despite significant relationships between these traits and female phenology. In males, average antler weights increased over time presumably as a result of improved resource availability and physiological condition through spring and summer. There was no evidence for any temporal change in average male annual breeding success, as might be expected if the timing of male rutting behaviour was failing to track advances in the timing of oestrus in females. Our results provide rare evidence linking phenological advances to climate warming in a wild mammal and highlight the potential complexity of relationships between climate warming, phenology and demography in wild vertebrates.  相似文献   

17.
叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。  相似文献   

18.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   

19.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   

20.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号