首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of macrophyte composition on ciliate community structure in a large, shallow, eutrophic Lake Võrtsjärv. We hypothesized that macrophyte composition must have strong influence on the dispersal of ecologically different ciliate groups in a shallow lake and that more diverse macrophyte stands cause also a greater diversity in the ciliate community. In Võrtsjärv macrophyte distribution is spatially strongly polarized both in east–west and north–south directions in relation to abiotic factors. Phragmites australis and Myriophyllum spicatum were the most widespread species occurring in most parts of the lake. Correlation of environmental, macrophyte and planktonic ciliate variables confirmed the suggested spatial gradients. More diverse macrophyte stands supported a high species richness and abundance of epiplanktonic community but showed negative influence on the number and abundance of euplanktonic ciliate taxa. Opposite trends were found relative to the abundance of P. australis. Benthic ciliates showed a similar distribution pattern to euplanktonic taxa being most abundant in sites were the Shannon–Weaver index for macrophytes was low. Strong polarizing effect of the lake's vegetation on planktonic ciliate diversity was reflected in correlations of the number of ciliate taxa as well as the numbers of eu- and epiplanktonic taxa with geographic co-ordinates.  相似文献   

2.
Fern species richness along a central Himalayan elevational gradient, Nepal   总被引:10,自引:0,他引:10  
Aim The study explores fern species richness patterns along a central Himalayan elevational gradient (100–4800 m a.s.l.) and evaluates factors influencing the spatial increase and decrease of fern richness. Location The Himalayas stretch from west to east by 20°, i.e. 75–95° east, and Nepal is located from 80 to 88° east in this range. Methods We used published data of the distribution of ferns and fern allies to interpolate species elevational ranges. Defining species presence between upper and lower elevation limit is the basis for richness estimates. The richness pattern was regressed against the total number of rainy days, and gradients that are linearly related to elevation, such as length of the growing season, potential evapotranspiration (PET, energy), and a moisture index (MI = PET/mean annual rainfall). The regressions were performed by generalized linear models. Results A unimodal relationship between species richness and elevation was observed, with maximum species richness at 2000 m. Fern richness has a unimodal response along the energy gradients, and a linear response with moisture gradients. Main conclusions The study confirms the importance of moisture on fern distributions as the peak coincides spatially with climatic factors that enhance moisture levels; the maximum number of rainy days and the cloud zone. Energy‐related variables probably control species richness directly at higher elevations but at the lower end the effect is more probably related to moisture.  相似文献   

3.
We investigated the pattern of distribution of intertidal soft-bottom fauna in streams and lagoons of the Uruguayan coast at three spatial scales. The Río de la Plata and the Atlantic Ocean produce on this coast a large-scale gradient in salinity, defining a freshwater (west), an estuarine (central) and a marine (east) region. Within each region, there are several streams and coastal lagoons (sites) that define a second scale of variability. A third scale is given by intertidal gradients within each site. Species richness and total abundance was low in the freshwater west region and high in the central and east regions. The community in the west region was characterized by the clam Curbicula fluminea; in the other regions, it was dominated mainly by the polychaete Heteromastus similis. The polychaete Nephtys fluviatilis was more abundant in the east region, while another polychaete, Laeonereis acuta, characterized the central region. Sediment fractions did not vary significantly at this scale. At the scale of the sites, species richness and total macrofaunal abundance were higher in coastal lagoons than in streams. Coarse sands were more common in coastal lagoons, while medium and fine sand characterized the sediment in streams. Within each site, species richness and total abundance increased towards the lower intertidal level; the macrofauna of the upper levels were a subsample of the fauna occurring at the lower levels. There was also a significantly lower proportion of fine sand at the upper level. At regional scales, the observed patterns may be indirectly or directly related to the gradient in salinity, through differential physiological tolerance to osmotic stress. At the scale of the sites, variability may be explained mainly by geomorphological and sedimentological differences between lagoons and streams. Variation among levels may be related to gradients in desiccation, colonization and predation.  相似文献   

4.
运用8种网目规格的成套浮性刺网作为鱼类采样工具,于2005年夏季在长江中游浅水草型湖泊牛山湖进行鱼类定量采样,通过比较不同茂密程度黄丝草生境中的小型鱼类组成、数量和大小结构,探讨此类湖泊小型鱼类的空间分布特征及其与沉水植被的关系.采样期间共捕获13种1124尾鱼,依据其等级丰度和出现频次,鳖和红鳍原鲌为该湖优势上层小型鱼类.在调查的沉水植物生物量范围内,鱼类物种丰富度和Shannon多样性指数与沉水植物生物量之间呈现倒抛物线关系;两种优势小型鱼类的种群丰度均与沉水植物生物量有着显著的线性正相关关系,且其平均个体大小在裸地生境较高、沉水植被茂密区较低,幼鱼更倾向群聚于厚密的黄丝草生境中;其他生境因子(水深和离岸距离)对鳖和红鳍原鲐空间分布的影响不显著.黄丝草植被生境是牛山湖两种优势小型鱼类的重要保护生境,应加强对黄丝草等沉水植被的保护及恢复.  相似文献   

5.
1. Submerged macrophyte and phytoplankton components of eutrophic, shallow lakes have frequently undergone dynamic changes in composition and abundance with important consequences for lake functioning and stability. However, because of a paucity of long‐term survey data, we know little regarding the nature, direction and sequencing of such changes over decadal–centennial or longer timescales. 2. To circumvent this problem, we analysed multiple (n = 5) chronologically correlated sediment cores for plant macro‐remains and a single core for pollen and diatoms from one small, shallow, English lake (Felbrigg Hall Lake, Norfolk, U.K.), documenting 250 years of change to macrophyte and algal communities. 3. All five cores showed broadly similar stratigraphic changes in macrophyte remains with three distinct phases of macrophyte development: Myriophyllum–Chara–Potamogeton (c. pre‐1900), to Ceratophyllum–Chara–Potamogeton (c. 1900–1960) and finally to Zannichellia–Potamogeton (c. post‐1960). Macrophyte species richness declined from at least 10 species pre‐1900 to just four species at the present day. Additionally, in the final Zannichellia–Potamogeton phase, a directional shift between epi‐benthic and phytoplankton‐based primary production was indicated by the diatom data. 4. Based on macrophyte–seasonality relationships established for the region, concomitant with the final shift to Zannichellia–Potamogeton, we infer a reduction in the seasonal duration of plant dominance (plant‐covered period). Furthermore, we hypothesise that this change in species composition resulted in a situation whereby macrophyte populations were seasonally ‘sandwiched’ between two phytoplankton peaks in spring and late summer as observed in the contemporary lake. 5. We suggest that eutrophication‐induced reductions in macrophyte species richness, especially if the number of plant‐seasonal strategies is reduced, may constrict the plant growing season. In turn, this may render a shallow lake increasingly vulnerable to seasonal invasions of phytoplankton resulting in further species losses in the plant community. Thus, as part of a slow (over perhaps 10–100s of years) and self‐perpetuating process, macrophytes may be gradually pushed out by phytoplankton without the need for a perturbation as required in the alternative stable states model of plant loss.  相似文献   

6.
1. Eutrophication has a profound effect on the biological structure and function of shallow lakes, altering the composition and abundance of submerged macrophyte and fish assemblages. Relatively little is known, however, about decadal to centennial‐scale change in these important aspects of shallow lake ecology. 2. Established palaeolimnological inference models are limited to reconstructing a single variable. As macrophyte and zooplanktivorous fish abundance exert dual and interacting controls on cladoceran assemblages a single variable inference model may contain significant error. To obviate this problem, we applied a new cladoceran‐based multivariate regression tree (MRT) model to cladoceran subfossil assemblages from dated cores from a small shallow lake (Felbrigg Lake, U.K.) to assess long‐term change in fish and submerged macrophyte abundance. Plant macrofossil, chironomid and mollusc subfossil assemblages were also analysed to track changes in biological structure and function and to evaluate the inferences of the MRT model. 3. Over the 200+ year period covered by the sediment cores, there was good agreement in the timing and nature of ecological change reflected by the plant macrofossil, mollusc, chironomid and cladoceran data. The sediment sequence was divided into three dated zones: c. 1797–1890, c. 1890–1954 and c. 1954–present. Prior to 1890 plant‐associated mollusc, cladoceran and chironomid assemblages indicated a species‐rich macrophyte community; a scenario confirmed by the plant macrofossil data. From c. 1890 to 1954 macrophyte‐associated species of all three invertebrate groups remained abundant but the proportion of pelagic cladocerans rose. Post‐1954 mollusc and chironomid assemblages changed to sediment associated detrital feeders and the proportion of pelagic cladoceran taxa increased further. 4. The cladoceran‐based MRT model indicated a long period of stability, c. 1790–1927, characterised by abundant submerged macrophytes and zooplanktivorous fish. From c. 1927 to 1980, the MRT model inferred a decline in zooplanktivorous fish density (ZF) but relative stability in August macrophyte abundance. From 1980 to 2000, an increase in zooplanktivorous fish was inferred tallying well with available data on the fish population (since the 1970s), which indicated extirpation of perch in the 1970s and a subsequent increase in the rudd population. The model inferred little change in August macrophyte abundance until post‐c. 1980 at which point it indicated a decline. The surface sediment assemblage was placed in MRT group A, where submerged plants are absent or very rare in late summer in good agreement with current conditions at the site. 5. The MRT model, applied here for the first time, appears to have successfully tracked changes in macrophyte abundance and ZF over the last 200 years at Felbrigg Lake. The inferences agreed with historical observations on the fish community and the supporting palaeolimnological data. Given that multiple structuring forces shape most biological communities, the application of a model capable of allowing for this represents a significant advance in palaeolimnology.  相似文献   

7.
The European Water Framework Directive requires ecological status classification and monitoring of surface and ground water bodies using biological indicators. To fulfill the demands of the Directive, a macrophyte‐based assessment system was developed for application on four lake site types in Germany. Biological lake site types were established using differences in characteristic macrophyte communities, reflecting ecoregion, Ca2+ content, mixis and morphology. Ecological status classification of lake sites is based on macrophyte abundance along 275 transects in 95 natural German lakes and the calculation of a reference index value, in some cases supplemented by submerged vegetation data. The reference index quantifies the deviation of species composition and abundance from reference conditions and classifies sites to one of the five ecological quality classes specified in the Directive. Based on an example of Lake Chiemsee, Germany, the possibilities for a wholelake assessment are discussed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
Clear Lake, Iowa, USA is a shallow, agriculturally eutrophic lake that has changed drastically over the past century. Eight macrophyte surveys since 1896 were pooled and examined to characterize long-term impacts of eutrophication on macrophyte community composition and relative abundance. Surveys in 1981 and 2000 revealed few submergent and floating-leaved species and a dominance in emergent species (Scirpus, Typha). Over the past century, however, species richness has declined from a high of 30 species in 1951 to 12 found today, while the community composition has shifted from submergent-(99%) to emergent-dominated floras (84%). Potamogeton praelongus was the first emergent species to disappear but was followed by several other clear water Potamogeton species. Several floating leaved and emergent genera increased in relative abundance with eutrophication, notably Nuphar, Nymphaea, Phragmites, Polygonum, Sagittaria, Scirpus, and Typha. P. pectinatus was present over the entire century due to its tolerance of eutrophic conditions. Macrophyte growth was generally light-limited, with 93% of the variance in relative abundance of submergent species explained by changes in water transparency. Clear Lake exhibits signs of alternative stable states, oscillating between clear and turbid water, coupled with high and low submerged species relative abundance. The maximum macrophyte richness occurred as the lake oscillated between submergent- and emergent-dominated states. Changes in the water level have also impacted macrophyte growth since the area of the lake occupied by emergent macrophytes was negatively correlated with water level. Strongest correlations indicated that macrophytes respond to water level variations with a 2-year time-lag.  相似文献   

10.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

11.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

12.
1. This study describes the environmental conditions and cladoceran community structure of 29 Faroese lakes with special focus on elucidating the impact of fish planktivory. In addition, long‐term changes in biological structure of the Faroese Lake Heygsvatn are investigated. 2. Present‐day species richness and community structure of cladocerans were identified from pelagial snapshot samples and from samples of surface sediment (0–1 cm). Multivariate statistical methods were applied to explore cladoceran species distribution relative to measured environmental variables. For Lake Heygsvatn, lake development was inferred by cladoceran‐based paleolimnological investigations of a 14C‐dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small‐sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher in the surface sediment samples than in the snapshot samples. 4. Fish abundance was found to be of only minor importance in shaping cladoceran community and body size structure, presumably because of predominance of the less efficient zooplanktivore brown trout. 5. Canonical correspondence analysis showed maximum lake depth (Zmax) to be the only significant variable in explaining the sedimentary cladoceran species (18 cladoceran taxa, two pelagic, 16 benthic) distribution. Multivariate regression trees revealed benthic taxa to dominate in lakes with Zmax < 4.8 m and pelagic taxa to dominate when Zmax was > 4.8 m. 6. Predictive models to infer Zmax were developed using variance weighted‐averaging procedures. These were subsequently applied to subfossil cladoceran assemblages identified from a 14C‐dated sediment core from Lake Heygsvatn and showed inferred Zmax to correspond well to the present‐day lake depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication.  相似文献   

13.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

14.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

15.
16.
1. Spatial scale may influence the interpretation of environmental gradients that underlie classification and ordination analyses of lotic macroinvertebrate communities. This could have important consequences for the spatial scale over which predictive models derived from these multivariate analyses can be applied. 2. Macroinvertebrate community data (identified to genus or species) from edge and main-channel habitats were obtained for sites on rivers from 25 of the 29 drainage basins in Victoria. Trends in community similarity were analysed by carrying out separate multivariate analyses on data from the edge habitats (199 sites) and the main-channel habitats (163 sites). 3. Hierarchical classification (UPGMA) showed that the edge data could be placed into 11 site groups and the main-channel data into 12 site groups. 4. Ordination analysis (hybrid multidimensional scaling) showed no sharp disjunctions between site groups in either habitat; overlap was frequent. Correlation of the ordination patterns with environmental variables showed that edge communities varied longitudinally within a drainage basin and from the east to the west of Victoria. These two trends were superimposed on one another to form a single gradient on the ordination. The taxon richness of edge communities was also related to the species richness of macrophytes at a site. Main-channel communities also displayed a longitudinal and a geographic gradient, but these two gradients were uncorrelated on the ordination. 5. Community similarity only weakly reflected geographic proximity in either habitat. A preliminary subdivision of Victoria into a series of biogeographic regions did not match the pattern of distribution of site groups for the edge habitat, illustrating the difficulties of applying to lotic communities a priori regionalizations based on terrestrial features of the landscape. 6. The longitudinal gradients in the two data sets were commonly observed in data gathered at smaller spatial scales in Victoria. The other gradients (geographic, macrophyte), however, were either not consistently repeated or not evident at smaller spatial scales. At small spatial scales (i.e. within a single drainage basin) gradients were related to variables that varied over restricted ranges, e.g. mean particle size of the substratum. 7. Species richness was very variable when plotted against river slope or distance of site from source; both of these are measures of position on the longitudinal gradients. In contrast to suggestions in the literature, species richness did not show a unimodal trend on these gradients, or any other trend. 8. Environmental gradients (apart from longitudinal gradients) that underlie predictive models of macroinvertebrate distribution are reflections of the spatial scale on which the model has been constructed and cannot be extrapolated to different scales. Models must be suited to the spatial scale over which predictions are required.  相似文献   

17.
Many north‐hemispherical mires seemingly untouched by drainage and cultivation are influenced by a diffuse sum of man‐made environmental changes, such as atmospherical nitrogen deposition that mask general patterns in species richness and functional group responses along resource gradients. To obtain insights into natural diversity‐environment relationships, we studied the vegetation and the peat chemistry of pristine bog ecosystems in southern Patagonia along a west–east transect across the Andes. The studied bog ecosystems covered a floristic gradient from hyperoceanic blanket bogs dominated by cushion building vascular plants via a transitional mixed type to Sphagnum‐dominated raised bogs east of the mountain range. To test the influence of resource availability on diversity patterns, species richness and functional groups were related to environmental variables by calculating general regression models and generalized additive models. Species richness showed strong linear correlations to peat chemical features and the general regression model resulted in three major environmental variables (water level, total nitrogen, NH4Cl soluble calcium), altogether explaining 76% of variance. Functional group response illustrated a clear separation along environmental gradients. Mosses dominated at the low end of a nitrogen gradient, whereas cushion plants had their optimum at intermediate levels, and graminoids dominated at high nitrogen contents. Further shifts were related to NH4Cl soluble calcium and water level. The models documented partly non‐linear relationships between functional group response and trophical peat properties. Within the three bog types, the calculated models differed remarkably illustrating the scale‐dependency of the explanatory factors. Our findings confirmed several general patterns of species richness and functional shifts along resource gradients in a surprisingly clear way and underpin the significance of undisturbed peatlands as reference systems for testing of ecological theory and for conservation and ecological restoration in landscapes with strong human impact.  相似文献   

18.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   

19.
Montane birds face significant threats from a warming climate, so determining the environmental factors that most strongly influence the composition of such assemblages is of critical conservation importance. Changes in temperature and other environmental conditions along elevational gradients are known to influence the species richness and abundance of bird assemblages occupying mountains. However, the role of species‐specific traits in mediating the responses of bird species to changing conditions remains poorly understood. We aimed to determine whether different bird species responded differently to changing environmental conditions in a relatively understudied biodiversity hotspot in subtropical rainforest on the east coast of Australia. We examined patterns in avian species richness and abundance along two rainforest elevational gradients using monthly point counts between September 2015 and October 2016. Environmental data on temperature, wetness, canopy cover and canopy height were collected simultaneously, and trait information on body size and feeding guild membership for each bird species was obtained from the Handbook of Australian, New Zealand and Antarctic Birds. We used a generalized linear mixed modelling (GLMM) framework to determine the drivers of species richness and abundance and to quantify species’ trait–environment interactions. GLMMs indicated that temperature alone was significantly positively correlated with species richness and abundance. Species richness declined with increasing elevation. When modelling abundance, we found that feeding guild membership did not significantly affect species’ responses to environmental conditions. In contrast, the predicted abundance of a species was found to depend on its body size, due to significant positive interactions between this trait, temperature and canopy cover. Our findings indicate that large‐bodied birds are likely to increase in abundance more rapidly than small‐bodied birds with continued climatic warming. These results underline the importance of temperature as a driving factor of avian community assembly along environmental gradients.  相似文献   

20.
太湖湖滨带生态系统健康评价   总被引:20,自引:4,他引:16  
根据湖滨带生态系统的特点,运用综合健康指数法建立了湖滨带生态系统健康评价体系,由目标层、准则层、指标层构成,其中准则层由湖滨带水质状况、底泥状况、植被状况、其它生物状况(浮游动物、浮游植物、底栖动物)、岸带物理状况5项组成,指标层由总氮、总磷、溶解氧、挺水植物覆盖率等15项指标构成。采用专家打分法、熵值法分别确定了准则层、指标层的权重系数。对太湖湖滨带33个点位进行了采样分析,并进行无量纲化处理后应用到所建立的评价体系中。评价结果显示33个点位中为"很健康"、"健康"、"亚健康"、"疾病"、"严重疾病"的分别占0%、24.2%、21.2%、51.5%及3.0%,也即超过一半的点位处于"疾病"状态。只有东太湖刚刚超过"健康"分数的下限,东部沿岸、贡湖、南部沿岸均处于"亚健康"状态,而梅梁湾、竺山湾、西部沿岸属于"疾病"状态,且竺山湾的生态健康状态最差。该评价结果与太湖湖滨带各分区的实际调查情况相符合,评价方法可靠性、可行性较强,可为其它湖泊湖滨带的生态系统健康评价提供一定的参照。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号