首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capsule: In Yellow-legged Gull Larus michahellis populations from the eastern Adriatic Sea, there are considerable differences in the ratio of migratory birds and apparent survival among the colonies. Survival was dependent on age, colony and area of dispersal.

Aims: To identify the ratio of migratory birds within populations of Yellow-legged Gulls, and to compare apparent survival of gulls during migration in central and northern Europe and around the Adriatic Sea.

Methods: We analysed 15 years of resighting data of Yellow-legged Gulls using a MARK multi-state model to calculate survival rates. The effects of age, natal colony and area of dispersal were examined.

Results: Almost 60% of Adriatic Yellow-legged Gulls were migratory but the ratio varied among colonies (10.3–78.3%). Survival was dependent on age, colony and area of dispersal, with average values per group ranging between 0.599 (se 0.093) and 0.684 (se 0.084).

Conclusion: The ratio of migratory and dispersive Yellow-legged Gulls from different Adriatic colonies might be affected by both inheritance and food availability.  相似文献   


2.
Predation is one of the key factors shaping the dynamics of animal populations. In birds, nest loss due to predation can be a significant cause of low reproductive success. Ground-nesting birds are among the bird groups most susceptible to predation, mainly because their nests are easily accessible to a broad suite of potential predators. For these birds, anthropogenic disturbances can generate changes in nest predation risk by altering their antipredator behaviour and also by altering the behaviour of the predator species, i.e. the predator becoming much more aware of predation opportunities due to frequent disturbances and/or motivated to repeat predation attempts when some are successful. To date, most previous studies investigating this have focused on a single effect, either predation or disturbance, on chick survival. It remains unknown how the risk of predation with and without disturbance varies with chick age. In this study, we used behavioural observations to assess how the interaction between predators and disturbance affects predation risk in chicks and how this interacts with chick age. Specifically, we investigated the effect of disturbance caused by humans and stray dogs on the predation of Slender-billed Gull Chroicocephalus genei chicks by Yellow-legged Gulls Larus michahellis, and whether this depended on the age of the chicks. Our results revealed that disturbance had a significant positive effect on predation measures of Slender-billed Gull chicks by Yellow-legged Gulls, but that this effect was mediated both by disturbance type and the age of chicks. Stray dogs entering the colony had a stronger disturbance effect on chicks than passing humans, increasing predation risk by Yellow-legged Gulls. Our results also showed that chick age interacts with disturbance type to determine the predation risk. This is probably mediated by chicks' capacity to escape predation by gathering in a single large crèche that runs into the water when disturbed. To preserve Slender-billed Gull colonies in one of its few remaining breeding sites in Tunisia, and as gulls tend to react even when the disturbance occurs relatively far from the colonies, it is crucial to (1) restrict human access to dikes and islets where large colonies breed and (2) construct artificial islets attractive to gulls and inaccessible to stray dogs.  相似文献   

3.
This study aimed to test the hypothesis that clutch size covaries with egg volume and hatching success in the Yellow-legged Gull Larus michahellis. We determined clutch size and egg volume in a sample of 131 nests, and we used the data to check whether egg volume varied among nests according to clutch size, while taking into account the effects of egg laying order. We also estimated hatching success rate and investigated the relationship between hatching success and clutch size. Egg volume varied among clutches according to clutch size, with eggs being larger in three-egg clutches than in two-egg clutches. Moreover, three-egg clutches showed higher daily survival rates, and hence hatching success, than two-egg clutches. Overall, our results suggest that in the Yellow-legged Gull clutch size covaries with egg volume and hatching success, which could possibly reflect an age effect through different mechanisms. Indeed, older females could be hypothesised to exhibit greater breeding performance than younger females because of their higher experience in tapping energy resources for egg formation and defending nests from dangers. Moreover, due to their age, older females are likely to have lower residual reproductive potential and should invest more heavily in current breeding attempts.  相似文献   

4.
Capsule The gulls adjust their diet composition and diversity according to refuse dump accessibility.

Aims To examine the influence of the accessibility of open-air refuse dumps on the pre-laying diet of the adult Yellow-legged Gull.

Methods We studied six colonies settled on six rocky islands off the southeastern coast of France. A comparative study of the diet of breeding adults from the six colonies was made through pellet analysis (a total of 848 pellets). We determined the main foraging habitat used (refuse dumps, terrestrial habitats, marine habitat) and the number of foraging habitats used simultaneously (one, two or three), from which we deduced the mean diet diversity.

Results Refuse dumps were consistently the main foraging habitat (evidence in 53–74% of pellets) for the six colonies, even when refuse dump accessibility was low. The majority of pellets contained materials from two simultaneous foraging habitats (evidence in 50–64% of pellets). We demonstrated the influence of a gradient of refuse dump accessibility in terms of adjustment of the pre-laying adult's diet. Indeed, high refuse dump accessibility leads to a poorly diversified diet dominated by refuse. In contrast, when refuse dump accessibility is low, Yellow-legged Gulls broaden their trophic niche, with an increased exploitation of alternative foraging habitats, such as terrestrial habitats.

Conclusion These results show the species' opportunistic feeding and high adaptability, two parameters which need to be known to foresee the consequences on population dynamics, feeding and predatory behaviour of a sudden and severe food shortage, for example due to closure of open-air refuse dumps.  相似文献   

5.
6.
7.
Males and females often age at different rates resulting in longevity 'gender gaps', where one sex outlives the other. Why the sexes have different lifespans is an age-old question, still fiercely debated today. One cellular process related to lifespan, which is known to differ according to sex, is the rate at which the protective telomere chromosome caps are lost. In humans, men have shorter lifespans and greater telomere shortening. This has led to speculation in the medical literature that sex-specific telomere shortening is one cause of sex-specific mortality. However, telomere shortening may be a cause for and/or a consequence of the processes that govern survival, and to infer general principles from single-taxon studies may be misleading. Here, we review recent work on telomeres in a variety of animal taxa, including those with reverse sexual lifespan dimorphism (i.e., where males live longer), to establish whether sex-specific survival is generally associated with sex differences in telomere dynamics. By doing this, we attempt to tease apart the potential underlying causes for sex differences in telomere lengths in humans and highlight targets for future research across all taxa.  相似文献   

8.
One of the stronger empirical generalizations to emerge from the study of genetic systems is that achiasmate meiosis, which has evolved 25–30 times, is always restricted to the heterogametic sex in dioecious species, usually the male. Here we collate data on quantitative sex differences in chiasma frequency from 54 species (4 hermaphroditic flatworms, 18 dioecious insects and vertebrates and 32 hermaphroditic plants) to test whether similar trends hold. Though significant sex differences have been observed within many species, only the Liliaceae show a significant sexual dimorphism in chiasma frequency across species, with more crossing over in embryo mother cells than in pollen mother cells; chiasma frequencies are unrelated to sex and gamety in all other higher taxa studied. Further, the magnitude of sexual dimorphism, independent of sign, does not differ among the three main ecological groups (dioecious animals, plants, and hermaphroditic animals), contrary to what would be expected if it reflected sex-specific selection on recombination. These results indicate that the strong trends for achiasmate meiosis do not apply to quantitative sex differences in recombination, and contradict theories of sex-specific costs and benefits. An alternative hypothesis suggests that sex differences may be more-or-less neutral, selection determining only the mean rate of recombination. While male and female chiasma frequencies are more similar than would be expected under complete neutrality, a less absolute form of the hypothesis is more difficult to falsify. In female mice the sex bivalent has more chiasmata for its length than the autosomes, perhaps compensating for the absence of recombination in males. Finally, we observe that chiasma frequencies in males and females are positively correlated across species, validating the use of only one sex in comparative studies of recombination.  相似文献   

9.
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

10.
11.
Previous research has demonstrated that great ape and macaque males achieve large canine crown sizes primarily through extended canine growth periods. Recent work has suggested, however, that platyrrhine males may achieve larger canine sizes by accelerating rather than prolonging growth. This study tested the hypothesis that the ontogenetic pathway leading to canine sexual dimorphism in catarrhines differs from that of platyrrhines. To test this hypothesis, males and females of several catarrhine genera (Hylobates, Papio, Macaca, Cercopithecus, and Cercocebus) and three platyrrhine genera (Cebus, Ateles, and Callicebus) were compared in the number and spacing of perikymata (enamel growth increments) on their canine crowns. In addition, perikymata periodicities (the number of days of growth perikymata represent) were determined for five genera (Hylobates, Papio, Macaca, Cebus, and Ateles) using previously published as well as original data gathered for this study. The central findings are as follows: 1) males have more perikymata than females for seven of eight genera (in five of the seven, the differences are statistically significant); 2) in general, the greater the degree of sexual dimorphism, the greater the sex difference in male and female perikymata numbers; 3) there is no evidence of a systematic sex difference in primate periodicities; and 4) there is some evidence that sex differences in enamel formation rates may make a minor contribution to canine sexual dimorphism in Papio and Cercopithecus. These findings strongly suggest that in both catarrhines and platyrrhines prolongation of male canine growth is the primary mechanism by which canine crown sexual dimorphism is achieved. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Sexual size dimorphism in species with asymptotic growth after maturity   总被引:3,自引:1,他引:2  
If animals mature at small sizes and then grow to larger asymptotic sizes, many factors can affect male and female size distributions. Standard growth equations can be used to study the processes affecting sexual size dimorphism in species with asymptotic growth after maturity. This paper first outlines the effects of sex differences in growth and maturation patterns on the direction and degree of sexual dimorphism. The next section considers the effects of variation in age structure or growth rates on adult body sizes and sexual size dimorphism. Field data from a crustacean, fish, lizard and mammal show how information on a species' growth and maturation patterns can be used to predict the relationships between male size, female size and sexual size dimorphism expected if a series of samples from the same population simply differed with respect to their ages or growth rates. The last section considers ecological or behavioural factors with different effects on the growth, maturation, survival or movement patterns of the two sexes. This study supports earlier suggestions that information on growth and maturation patterns may be useful, if not essential, for comparative studies of sexual size dimorphism in taxa with asymptotic growth after maturity.  相似文献   

13.
The Yellow-legged Gull Larus cachinnans was first recorded in Poland in the 1980s. We analysed the probable factors responsible for its successful colonization of new areas. We also expected that such a large species should affect populations of other colonial waterbirds. We studied the breeding and feeding ecology in the largest inland colony of the Yellow-legged Gull in Poland, located in a sedimentation basin near Tarnów (southeastern Poland). The first breeding pair was recorded in 1992 and the population reached 177 pairs in 2001. The population growth rate in this colony, of about 58% per year, fits an exponential model. Nine localities with breeding pairs have been found recently in southern Poland and we now estimate the total population size to be 200–250 pairs. The large clutch size, and high hatching and breeding success in the Tarnów colony suggest that food was plentiful. Food items were frequently found at the nests. Fish, mainly Carp Cyprinus carpio , were the predominant food items delivered to chicks; however, there was more refuse brought to nests during the incubation stage. Immigration probably caused the growth of the colony studied, although our calculations have shown that natal productivity alone is sufficient to maintain this population. The study showed that the growing population of Yellow-legged Gull might cause considerable reduction in the population sizes of some of the native waterbird species.  相似文献   

14.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

15.
Sex differences in growth were studied in a longitudinal study of 39 boys and 31 girls for sitting height. Individual growth patterns were determined by means of Preece Baines model 1. The results showed no significant bias in the fits of height and sitting height in boys and girls. Girls fits were significantly better than those of the boys for both height and sitting height. Univariate analysis by means of Mann-Whitney test showed significant sex differences for all function and biological parameters of height and sitting height excepted for s1 parameter (the rate constant controlling pubertal velocity). Linear discriminant analysis revealed that the strongest sex differences for the timing and size parameters at adolescent. Peak velocity at adolescent was slightly less discriminating between the two sexes and velocity at take-off showed the least sex difference. These trends were similar for height and sitting height. Decomposition of sex differences in adult size showed that the major contributor to adult the sex differences is the effect of the later onset of the adolescent growth spurt in boys than in girls. Sex differences in adult phenotypes of height and sitting height are to a slightly lesser extent due to the greater adolescent gain in boys while prepubertal sex differences are almost negligible.  相似文献   

16.
  1. Species’ ranges are dynamic, changing through range shifts, contractions, and expansions. Individuals at the edge of a species’ shifting range often possess morphological traits that increase movement capacity, that are not observed in individuals farther back within the species’ range. Although morphological traits that increase in proportion toward the range edge may differ between the sexes, such sex differences are rarely studied.
  2. Here, we test the hypotheses that body size and condition increase with proximity to an expanding range edge in the flightless ground beetle, Carabus hortensis, and that these trait changes differ between the sexes.
  3. Male, but not female, body size increased with proximity to the range edge. Body size was positively correlated with male front and mid tibia length and to female hind tibia length, indicating that body size is indicative of movement capacity in both sexes. Body condition (relative to body size) decreased with increasing population density in males but not females. Population density was lowest at the range edge.
  4. Our results indicate that sex is an important factor influencing patterns in trait distribution across species’ ranges, and future studies should investigate changes in morphological traits across expanding range margins separately for males and females. We discuss the implications for sex differences in resource allocation and reproductive rates for trait differentiation across species’ shifting ranges.
  相似文献   

17.
The degree and/or direction of sexual size dimorphism (SSD) varies considerably among species and among populations within species. Although this variation is in part genetically based, much of it is probably due to the sexes exhibiting differences in body size plasticity. Here, we use the hawkmoth, Manduca sexta, to test the hypothesis that moths reared on different diet qualities and at different temperatures will exhibit sex-specific body size plasticity. In addition, we explore the proximate mechanisms that potentially create sex-specific plasticity by examining three physiological variables known to regulate body size in this insect: the growth rate, the critical weight (which measures the cessation of juvenile hormone secretion from the corpora allata) and the interval to cessation of growth (ICG; which measures the time interval between the critical weight and the secretion of the ecdysteroids that regulate pupation and metamorphosis). We found that peak larval mass of males and females did not exhibit sex-specific plasticity in response to diet or temperature. However, the sexes did exhibit sex-specific plasticity in the mechanism that controls size; males and females exhibited sex-specific plasticity in the growth rate and the critical weight in response to both diet and temperature, whereas the ICG only exhibited sex-specific plasticity in response to diet. Our results suggest it is important for the sexes to maintain the same degree of SSD across environments and that this is accomplished by the sexes exhibiting differential sensitivity of the physiological factors that determine body size to environmental variation.  相似文献   

18.
19.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

20.
Summary A model predicting optimal age and size at maturity is presented, exploring the conflict between growth and energy allocation to reproduction. According to the model, the factors promoting delayed maturity and large adult body size are as follows: (1) high rate of somatic growth, (2) high percentage increase in reproductive rate with body size increase, (3) long life expectancy at maturity for annuals or large number of expected productive days (when either growth or reproduction is possible) for perennials with growth ceasing at maturity, (4) life expectancy increasing with body size. All these factors are combined in the mathematical formula predicting optimal age and size at maturity, which allows for quantitative predictions. The optimal schedule of growth and reproduction may be achieved by natural selection, developmental plasticity, or when one species replaces another. Sexual size dimorphism is also discussed, resulting from different optimal age at maturity for either sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号