首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For the first time dioecy inMikania and in the tribeEupatorieae is described and discussed. The condition is known only in members of theMikania swartziana Griseb. complex, a group of eight species, all endemic to the Greater Antillean Islands of Cuba, Hispaniola, and Jamaica.  相似文献   

2.
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.  相似文献   

3.
The Neotropical genus Glyptolenus Bates is represented in the West Indies by five species, three of which are geographically restricted to single islands; G. latelytra (Darlington) in Jamaica, G. simplicicollis Darlington in Dominica, and G. smithi, new species from St. Vincent. Glyptolenus chalybaeus (Dejean), widespread on the eastern South American mainland, extends northward through the Lesser Antilles to Montserrat. The fifth species, G. negrei Perrault, also widespread on the northern rim of South America, ranges only as far north as the continental island of Trinidad. The first four taxa have most likely achieved their distributions by over‐water dispersal from mainland South and Central America, possibly as many as four separate times. Their absence from the Greater Antilles of Cuba and Hispaniola is contrasted to the occurrence of multiple lineages on those islands in the closely related genus Platynus Bonelli.  相似文献   

4.
Aim We examined the relative influence of geographical location, habitat structure (physiognomy), and dominant plant species composition (floristics) on avian habitat relationships over a large spatial extent. Although it has been predicted that avian distributions are more likely to covary with physiognomy than with floristics at coarse scales, we sought to determine, more specifically, whether there remained a significant association between gradients in assemblages of bird species and dominant plant species within a general biome type, after statistically controlling for structural variation and geographical location of sampling sites. Location Our sample consisted of a subset of North American Breeding Bird Census survey sites that covered most of the range of eastern forests, from Florida to Nova Scotia, and west to Minnesota and North Dakota (up to c. 2500 km between sites). Methods We restricted our analyses to the single year (1981) that provided the largest sample of sites (47) for which vegetation data were available within ± 2 years of the avian surveys. We examined the relationship between avian community composition and tree species composition over this series of forested plots. Data were divided into four sets: (1) bird species abundances, (2) tree species abundances, (3) physiognomic or structural variables and (4) geographical location (latitude and longitude). We performed separate detrended correspondence analysis ordinations of birds and trees, before and after statistically partialling out covariation associated with structural variables and geographical location. To gauge the relationship between the two sets of species we correlated site scores resulting from separate ordinations. We also compared continental‐scale patterns of variation in bird and tree assemblages to understand possible mechanisms controlling species distribution at that scale. Results Both bird and tree communities yielded strong gradients, with first‐axis eigenvalues from 0.75 to 0.97. All gradients were relatively long (> 4.0), implying complete turnover in species composition. However, geographical location accounted for < 10% of the total variation associated with any ordination. Prior to partialling out covariation resulting from location and physiognomy, bird species ordinations were strongly correlated with tree species ordinations. The strength of association was reduced after partialling, but one bird and one tree axis remained significantly correlated. There was a significant species–area effect for birds, but not for trees. Main conclusions There was a significant relationship between bird species assemblages and tree species assemblages in the eastern forests of North America. Even after partialling out covariation associated with spatial location and forest physiognomy, there remained a significant correlation between major axes from bird and tree ordinations, consistent with the hypothesis that floristic variation is likely to be important in organizing assemblages of birds within a general biome type, albeit over a much larger spatial extent than originally predicted. Forest tree species ordinations differed from bird species ordinations in several ways: trees had a higher rate of turnover along underlying environmental gradients; trees appeared more patchily distributed than birds at this scale; and tree species were more spaced out along the underlying ecological gradients, with less overlap. By understanding the relationship between bird assemblages and forest floristics, we might better understand how avian communities are likely to change if tree species distributions are altered as a result of climatic changes.  相似文献   

5.
We report the results of systematic vascular plant and bird surveys in Seasonally Dry Tropical Forest (SDTF) across leeward and windward elevation gradients (31–884 masl) in the Sierra Martín García (SMG), Dominican Republic. We expected to see gradual, systematic changes in plant distributions with elevation owing to the strong effect of topoclimate. In contrast, we predicted bird community composition to be related only weakly to elevation, because we expected bird distributions to be more strongly related to vegetation structure than composition. Based on 48 vegetation transects, we identified seven groups that differed in their species composition, which was correlated with elevation and precipitation. The most distinctive vegetation community occurs in dry, warm, and low elevations on the leeward slope, featuring large numbers of non‐woody indicator species (those species found frequently within one group but not in other groups) even though most of its trees and shrubs represent species that are widespread. Low rainfall and shale bedrock (rather than limestone) may be the primary drivers of distinctiveness in the low‐elevation leeward plots. On the leeward slope, where we also surveyed the birds, the vegetation community changes gradually with elevation at mid‐ to high elevations. The most distinctive bird community also was associated with the low‐elevation forest on shale bedrock and was dominated by widespread species. At higher elevations, but still within leeward SDTF, the bird communities had a stronger component of species endemic either to Hispaniola or to Caribbean islands, and species turnover did not correspond to the elevation gradient. Abstract in Spanish is available with online material.  相似文献   

6.
Aim We addressed the roles of environmental filtering, historical biogeography and evolutionary niche conservatism on the phylogenetic structure of tropical tree communities with the following questions. (1) What is the impact of mesoclimatic gradients and dispersal limitation on phylogenetic turnover and species turnover? (2) How does phylogenetic turnover between continents compare in intensity with the turnover driven by climatic gradients at a regional scale? (3) Are independent phylogenetic reconstructions of the mesoclimatic niche of clades congruent between continents? Location Panama Canal Watershed and Western Ghats (India), two anciently divergent biogeographic contexts but with comparable rainfall gradients. Methods Using floristic data for 50 1‐ha plots in each region, independent measures of phylogenetic turnover (ΠST) and species turnover (Jaccard) between plots were regressed on geographic and ecological distances. Mesoclimatic niches were reconstructed for each node of the phylogeny and compared between the two continents. Results (1) The phylogenetic turnover within each region is best explained by mesoclimatic differences (environmental filtering), while species turnover depends both on mesoclimatic differences and geographic distances (dispersal limitation). (2) The phylogenetic turnover between continents (ΠST = 0.009) is comparable to that caused by mesoclimatic gradients within regions (ΠST = 0.010) and both effects seem cumulative. (3) Independent phylogenetic reconstructions of the mesoclimatic niches were strongly correlated between the two continents (r = 0.61), despite the absence of shared species. Main conclusions Our results demonstrate a world‐wide deep phylogenetic signal for mesoclimatic niche within a biome, indicating that positive phylogenetic turnover at a regional scale reflects environmental filtering in plant communities.  相似文献   

7.
The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.  相似文献   

8.
Franklin J  Steadman DW 《PloS one》2010,5(12):e15685

Background

We examined species composition of forest and bird communities in relation to environmental and human disturbance gradients on Lakeba (55.9 km2), Nayau (18.4 km2), and Aiwa Levu (1.2 km2), islands in the Lau Group of Fiji, West Polynesia. The unique avifauna of West Polynesia (Fiji, Tonga, Samoa) has been subjected to prehistoric human-caused extinctions but little was previously known about this topic in the Lau Group. We expected that the degree of human disturbance would be a strong determinant of tree species composition and habitat quality for surviving landbirds, while island area would be unrelated to bird diversity.

Methodology/Principal Findings

All trees >5 cm diameter were measured and identified in 23 forest plots of 500 m2 each. We recognized four forest species assemblages differentiated by composition and structure: coastal forest, dominated by widely distributed species, and three forest types with differences related more to disturbance history (stages of secondary succession following clearing or selective logging) than to environmental gradients (elevation, slope, rockiness). Our point counts (73 locations in 1 or 2 seasons) recorded 18 of the 24 species of landbirds that exist on the three islands. The relative abundance and species richness of birds were greatest in the forested habitats least disturbed by people. These differences were due mostly to increased numbers of columbid frugivores and passerine insectivores in forests on Lakeba and Aiwa Levu. Considering only forested habitats, the relative abundance and species richness of birds were greater on the small but completely forested (and uninhabited) island of Aiwa Levu than on the much larger island of Lakeba.

Conclusions/Significance

Forest disturbance history is more important than island area in structuring both tree and landbird communities on remote Pacific islands. Even very small islands may be suitable for conservation reserves if they are protected from human disturbance.  相似文献   

9.
Three species ofBactris are recognized in the Greater Antilles:B. cubensis (from Cuba),B. plumeriana (from Hispaniola), andB. jamaicana (from Jamaica). A cladistic analysis of the non-ocreate clade—i.e.,Bactris cubensis, B. plumeriana, B. jamaicana, B. macana, andB. gasipaes—confirmed that the Greater Antillean species ofBactris form a monophyletic group, i.e., the Antillean clade. Synapomorphies supporting the Antillean clade are mesocarp and endocarp fibers numerous, parallel, predominantly narrow, few broad, extending the entire length of the endocarp; and leaf segments 45–80 per side of rachis. The presence of fiber-sclereids in the leaf lamina, and petals of the staminate flowers ovate to ovatetrullate, with sparsely branched fibers, may represent additional synapomorphies.Bactris plumeriana andB. jamaicana are hypothesized to be sister species, a grouping weakly supported by their short anthers. Each species has at least one autapomorphy; therefore, all are considered to be a cladospecies. Noteworthy interpopulational variation occurs withinBactris plumeriana andB. cubensis.  相似文献   

10.
Antigonon leptopus is a smothering, habitat-transforming vine with showy pink flowers. Originating in Mexico, it is now widespread or invasive on tropical islands around the world, including the West Indies, as a consequence of active human dispersal and disturbance. Using mixed methods research, we assessed the species’ (1) historical geographic spread throughout the Americas, (2) local ethnobotanical importance in Jamaica, and (3) biomedical potential as an herbal medicine. Methods included georeferencing of time-stamped herbarium collections from pre-1900 to 2016, literature review, and ethnobotanical research in rural and urban Jamaica (n?=?58 participants). Results demonstrated that A. leptopus has spread aggressively in the West Indies since the 1950s. It has become a problematic invasive species in urban Jamaica, which has likely facilitated its local popularity as an herbal medicine. In urban Jamaica, ethnobotanical interviews ranked the species as the fourth most frequently reported medicinal plant. In contrast, A. leptopus was present but did not dominate the vegetation in rural Jamaica, and was never mentioned during interviews. The biomedical literature offers limited support for its biological activity, while showing no acute toxic effects. The ethnobotany of A. leptopus showcases the dynamic interplay between people, plants, and the environment.  相似文献   

11.

Questions

Dryland annual plant communities constitute the most species-rich small-scale vegetation in the Mediterranean. Nevertheless, the composition and diversity of these units and the factors controlling their variation are still insufficiently understood. Therefore, we investigated species composition and richness patterns in relation to important environmental gradients provided by climate and soil.

Location

Central Crete, Greece.

Methods

The study is based on 82 plots of 4 m2 sampled at altitudes between 11 and 1400 m a.s.l. We conducted vegetation relevés and soil analyses. We used generalised additive models to model species richness and community characteristics along the studied gradients. We then performed distance-based redundancy analysis to determine the main environmental factors influencing species composition. To determine species of diagnostic value for bedrock types, we applied an indicator species analysis. Correlation tests were used to test the performance of the South Aegean Plant Indicator Values on our dataset.

Results

We recorded 347 taxa (species and subspecies) of 43 plant families, and mean species numbers of 47.2 ± 12.5 per plot. While overall species richness varied only slightly along the analysed environmental gradients, significant changes were observed for relative proportions of species from different life forms and families. Soil pH and elevation had the highest influence on the variation in species composition (23.3% explained). We found 22 species indicative of calcareous rock and 24 species indicative of lime-deficient rock types. The South Aegean Plant Indicator Values were relatively strongly correlated with environmental variables.

Conclusions

Results indicate considerable species turnover both along climatic (elevation) and soil gradients, highlighting the special importance of soil pH. The data provided by our study are expected to supply relevant ecological background information for a pending classification of East Mediterranean annual-rich vegetation.  相似文献   

12.

Aim

The exceptional turnover in biota with elevation and number of species coexisting at any elevation makes tropical mountains hotspots of biodiversity. However, understanding the historical processes through which species arising in geographical isolation (i.e. allopatry) assemble along the same mountain slope (i.e. sympatry) remains a major challenge. Multiple models have been proposed including (1) the sorting of already elevationally divergent species, (2) the displacement of elevation upon secondary contact, potentially followed by convergence, or (3) elevational conservatism, in which ancestral elevational ranges are retained. However, the relative contribution of these processes to generating patterns of elevational overlap and turnover is unknown.

Location

Tropical mountains of Central- and South-America.

Time Period

The last 12 myr.

Major Taxa Studied

Birds.

Methods

We collate a dataset of 165 avian sister pairs containing estimates of phylogenetic age, geographical and regional elevational range overlap. We develop a framework based on continuous-time Markov models to infer the relative frequency of different historical pathways in explaining present-day overlap and turnover of sympatric species along elevational gradients.

Results

We show that turnover of closely related bird species across elevation can predominantly be explained by displacement of elevation ranges upon contact (81%) rather than elevational divergence in allopatry (19%). In contrast, overlap along elevation gradients is primarily (88%) explained by conservatism of elevational ranges rather than displacement followed by elevational expansion (12%).

Main Conclusions

Bird communities across elevation gradients are assembled through a mix of processes, including the sorting, displacement and conservatism of species elevation ranges. The dominant role of conservatism in explaining co-occurrence of species on mountain slopes rejects more complex scenarios requiring displacement followed by expansion. The ability of closely related species to coexist without elevational divergence provides a direct and faster pathway to sympatry and helps explain the exceptional species richness of tropical mountains.  相似文献   

13.
Pereskia marcanoi is newly described from the rocky hillsides of Cerro San Francisco (Bánica), western Dominican Republic. With three other species from Hispaniola and Cuba, this new taxon forms a unique group of functionally dioeciousPereskia species native to the West Indies. Some important diagnostic characters of the members of this group are contrasted in key form.  相似文献   

14.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

15.
16.

Question

Global‐scale forest censuses provide an opportunity to understand diversification processes in woody plant communities. Based on the climatic or geographic filtering hypotheses associated with tropical niche conservatism and dispersal limitation, we analysed phylogenetic community structures across a wide range of biomes and evaluated to what extent region‐specific processes have influenced large‐scale diversity patterns of tree species communities across latitude or continent.

Location

Global.

Methods

We generated a data set of species abundances for 21,379 angiosperm woody plants in 843 plots worldwide. We calculated net relatedness index (NRI) for each plot, based on a single global species pool and regional species pools, and phylogenetic β‐diversity (PBD) between plots. Then, we explored the correlations of NRI with climatic and geographic variables, and clarified phylogenetic dissimilarity along geographic and climatic differences. We also compared these patterns for South America, Africa, the Indo‐Pacific, Australia, the Nearctic, Western Palearctic and Eastern Palearctic.

Results

NRI based on a global‐scale species pool was negatively associated with precipitation and positively associated with Quaternary temperature change. PBD was positively associated with geographic distance and precipitation difference between plots across tropical and extratropical biomes. Moreover, phylogenetic dissimilarity was smaller in extratropical regions than in regions including the tropics, although temperate forests of the Eastern Palearctic showed a greater dissimilarity within extratropical regions.

Conclusions

Our findings support predictions of the climatic and geographic filtering hypotheses. Climatic filtering (climatic harshness and paleoclimatic change) relative to tropical niche conservatism played a role in sorting species from the global species pool and shaped the large‐scale diversity patterns, such as the latitudinal gradient observed across continents. Geographic filtering associated with dispersal limitation substantially contributed to regional divergence of tropical/extratropical biomes among continents. Old, long‐standing geographic barriers and recent climatic events differently influenced evolutionary diversification of angiosperm tree communities in tropical and extratropical biomes.  相似文献   

17.

Question

Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae).

Location

Pavlov Hills, SE Czech Republic.

Methods

For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients.

Results

We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community.

Conclusions

Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peaks in biomass and species richness.  相似文献   

18.
Aim In this study we present a molecular phylogenetic and phylogeographical analysis of Peltophryne (Anura: Bufonidae), an endemic genus of Antillean toads, to investigate the spatial and temporal origins of the genus, with particular focus on the eight Cuban species. Location Greater Antilles, with extensive sampling of the Cuban archipelago. Methods We obtained DNA sequence data from two mitochondrial genes, cytochrome c oxidase subunit I (COI) and ribosomal RNA (16S), for 124 toads representing all eight Cuban species, and combined this with published data from Hispaniola (one of three species) and Puerto Rico (one of one species) to establish a molecular phylogeny for Peltophryne. In addition, we explored the phylogeographical structure of widespread Cuban species. For a subset of 42 toads we also obtained DNA sequence data from two nuclear genes, recombination activator‐1 (RAG‐1) and chemokine receptor 4 (CXCR‐4). We combined our molecular data with published DNA sequences from a global sample of bufonid toads to place the spatial and temporal origins of Peltophryne in the Caribbean within a fuller geographical and phylogenetic context. Results All phylogenetic analyses supported the monophyly of West Indian toads. The ancestor of Peltophyrne diverged from its mainland source around the Eocene–Oligocene boundary, with a subsequent radiation across the Caribbean islands taking place during the Miocene. Cuban species are monophyletic with a basal split in the early–middle Miocene that separates extant small‐bodied from large‐bodied species. Extensive mitochondrial DNA (mtDNA) sampling within widespread Cuban species revealed contrasting phylogeographical patterns. Peltophryne taladai and P. empusa showed deeply divergent lineages, whereas no geographical structure was observed in the widespread P. peltocephala. Main conclusions Our timeline for Peltophryne diversification is consistent with a biogeographical model requiring no long‐distance overwater dispersal. Although confidence intervals on divergence time estimates are wide, the stem age of Peltophyrne coincides with the hypothesized GAARlandia landspan or archipelago, which may have connected South America briefly with the Antilles. The ages of Peltophryne for Puerto Rico, Hispaniola and Cuba are consistent with a recently proposed vicariance scenario for the region. Our molecular results support the recognition of all eight species in Cuba, and provide evidence of possible cryptic species.  相似文献   

19.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

20.
Studies of the variation in tropical plant species diversity and itsrelationship with environmental factors are largely based on research intropical moist/wet forests. Seasonally dry tropical forests (SDTFs), incontrast, have been poorly investigated. In this paper we present data from 20Mexican SDTF sites sampled to describe the magnitude of floristic diversity inthese forests and to address the following questions: (i) to what extent isspecies diversity related to rainfall? (ii) Are there other climatic variablesthat explain variation in species diversity in SDTFs? (iii) How does speciesidentity vary spatially (species turnover) within the country? We found thatspecies diversity was consistently greater (a ca. twofold difference) than wouldbe expected according to the sites' precipitation. Rainfall did notsignificantly explain the variation in species diversity. Likewise, the numberof dry and wet months per year was unrelated to species diversity. In contrast,a simple measure of potential evapotranspiration (Thornthwaite's index)significantly explained the variation in species diversity. In addition to thegreat diversity of species per site (local diversity), species turnover wasconsiderable: of a total of 917 sampled species, 72% were present only in asingle site and the average similarity (Sorensen's index) among sites wasonly 9%. These aspects of floristic diversity and the high deforestation ratesof these forests in Mexico indicate that conservation efforts should be directedto tropical forests growing in locations of low and seasonal rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号