首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using an appropriate accuracy measure is essential for assessing prediction accuracy in species distribution modelling. Therefore, model evaluation as an analytical uncertainty is a challenging problem. Although a variety of accuracy measures for the assessment of prediction errors in presence/absence models is available, there is a lack of spatial accuracy measures, i.e. measures that are sensitive to the spatial arrangement of the predictions. We present ‘spind’, a new software package (based on the R software program) that provides spatial performance measures for grid‐based models. These accuracy measures are generalized, spatially corrected versions of the classical ones, thus enabling comparisons between them. Our method for evaluation consists of the following steps: 1) incorporate additional autocorrelation until spatial autocorrelation in predictions and actuals is balanced, 2) cross‐classify predictions and adjusted actuals in a 4 × 4 contingency table, 3) use a refined weighting pattern for errors, and 4) calculate weighted Kappa, sensitivity, specificity and subsequently ROC, AUC, TSS to get spatially corrected indices. To illustrate the impact of our spatial method we present an example of simulated data as well as an example of presence/absence data of the plant species Dianthus carthusianorum across Germany. Our analysis includes a statistic for the comparison of spatial and classical (non‐spatial) indices. We find that our spatial indices tend to result in higher values than classical ones. These differences are statistically significant at medium and high autocorrelation levels. We conclude that these spatial accuracy measures may contribute to evaluate prediction errors in presence/absence models, especially in case of medium or high degree of similarity of adjacent data, i.e. aggregated (clumped) or continuous species distributions.  相似文献   

3.
Wenkai Li  Qinghua Guo 《Ecography》2013,36(7):788-799
It is very common that only presence data are available in ecological niche modeling. However, most existing methods for evaluating the accuracy of presence–absence (binary) predictions of species require presence–absence data. The aim of this study is to present a new method for accuracy assessment that does not rely on absence data. Two new statistics Fpb and Fcpb were derived based on presence–background data. With generated six virtual species, we used DOMAIN, generalized linear modeling (GLM), and maximum entropy (MAXENT) to produce different species presence–absence predictions. To investigate the effectiveness of the new statistics in accuracy assessment, we used Fpb, Fcpb, the traditional F‐measure (F), kappa coefficient, true skill statistic (TSS), area under the receiver operating characteristic curve (AUC), and the contrast validation index (CVI) to evaluate the accuracy of predictions, and the behaviors of these accuracy measures were compared. The effectiveness of Fpb for threshold selection and estimation of species prevalence was also investigated. Experimental results show that Fcpb is an estimate of F. The Pearson's correlation coefficient (COR) between Fcpb and F is 0.9882, with a root‐mean‐square error (RMSE) of 0.0171. In general, Fpb, Fcpb, F, kappa coefficient, TSS, and CVI can sort models by the accuracy of binary prediction, but AUC is not appropriate to evaluate the accuracy of binary prediction. For DOMAIN, GLM, and MAXENT, finding the threshold by maximizing Fpb and by maximizing F result in similar accuracies. In addition, the estimation of species prevalence based on binary output with maximizing Fpb as the thresholding method is significantly more accurate than simply averaging the original continuous output. The best estimate of prevalence is provided by the binary output of MAXENT, with an RMSE of 0.0116. Finally, we conclude that the new method is promising in accuracy assessment, threshold selection, and estimation of species prevalence, all of which are important but challenging problems with presence‐only data. Because it does not require absence data, the new method will have important applications in ecological niche modeling.  相似文献   

4.
Species distribution models (SDMs) have been widely used in ecology, biogeography, and conservation. Although ecological theory predicts that species occupancy is dynamic, the outputs of SDMs are generally converted into a single occurrence map, and model performance is evaluated in terms of success to predict presences and absences. The aim of this study was to characterize the effects of a gradual response in species occupancy to environmental gradients into the performance of SDMs. First we outline guidelines for the appropriate simulation of artificial species that allows controlling for gradualism and prevalence in the occupancy patterns over an environmental gradient. Second, we derive theoretical expected values for success measures based on presence‐absence predictions (AUC, Kappa, sensitivity and specificity). And finally we used artificial species to exemplify and test the effect of a gradual probabilistic occupancy response to environmental gradients on SDM performance. Our results show that when a species responds gradually to an environmental gradient, conventional measures of SDM predictive success based on presence‐absence cannot be expected to attain currently accepted performance values considered as good, even for a model that recovers perfectly well the true probability of occurrence. A gradual response imposes a theoretical expected value for these measures of performance that can be calculated from the species properties. However, irrespective of the statistical modeling strategy used and of how gradual the species response is, one can recover the true probability of occurrence as a function of environmental variables provided that species and sample prevalence are similar. Therefore, model performance based on presence‐absence should be judged against the theoretical expected value rather than to absolute values currently in use such as AUC > 0.8. Overall, we advocate for a wider use of the probability of occurrence and emphasize the need for further technical developments in this sense.  相似文献   

5.
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).  相似文献   

6.
Species distribution models (SDM) are commonly used to obtain hypotheses on either the realized or the potential distribution of species. The reliability and meaning of these hypotheses depends on the kind of absences included in the training data, the variables used as predictors and the methods employed to parameterize the models. Information about the absence of species from certain localities is usually lacking, so pseudo‐absences are often incorporated to the training data. We explore the effect of using different kinds of pseudo‐absences on SDM results. To do this, we use presence information on Aphodius bonvouloiri, a dung beetle species of well‐known distribution. We incorporate different types of pseudo‐absences to create different sets of training data that account for absences of methodological (i.e. false absences), contingent and environmental origin. We used these datasets to calibrate SDMs with GAMs as modelling technique and climatic variables as predictors, and compare these results with geographical representations of the potential and realized distribution of the species created independently. Our results confirm the importance of the kind of absences in determining the aspect of species distribution identified through SDM. Estimations of the potential distribution require absences located farther apart in the geographic and/or environmental space than estimations of the realized distribution. Methodological absences produce overall bad models, and absences that are too far from the presence points in either the environmental or the geographic space may not be informative, yielding important overestimations. GLMs and Artificial Neural Networks yielded similar results. Synthetic discrimination measures such as the Area Under the Receiver Characteristic Curve (AUC) must be interpreted with caution, as they can produce misleading comparative results. Instead, the joint examination of ommission and comission errors provides a better understanding of the reliability of SDM results.  相似文献   

7.
Species distribution models (SDMs) are used to test ecological theory and to direct targeted surveys for species of conservation concern. Several studies have tested for an influence of species traits on the predictive accuracy of SDMs. However, most used the same set of environmental predictors for all species and/or did not use truly independent data to test SDM accuracy. We built eight SDMs for each of 24 plant species of conservation concern, varying the environmental predictors included in each SDM version. We then measured the accuracy of each SDM using independent presence and absence data to calculate area under the receiver operating characteristic curve (AUC) and true positive rate (TPR). We used generalized linear mixed models to test for a relationship between species traits and SDM accuracy, while accounting for variation in SDM performance that might be introduced by different predictor sets. All traits affected one or both SDM accuracy measures. Species with lighter seeds, animal‐dispersed seeds, and a higher density of occurrences had higher AUC and TPR than other species, all else being equal. Long‐lived woody species had higher AUC than herbaceous species, but lower TPR. These results support the hypothesis that the strength of species–environment correlations is affected by characteristics of species or their geographic distributions. However, because each species has multiple traits, and because AUC and TPR can be affected differently, there is no straightforward way to determine a priori which species will yield useful SDMs based on their traits. Most species yielded at least one useful SDM. Therefore, it is worthwhile to build and test SDMs for the purpose of finding new populations of plant species of conservation concern, regardless of these species’ traits.  相似文献   

8.
Aim To explore the impacts of imperfect reference data on the accuracy of species distribution model predictions. The main focus is on impacts of the quality of reference data (labelling accuracy) and, to a lesser degree, data quantity (sample size) on species presence–absence modelling. Innovation The paper challenges the common assumption that some popular measures of model accuracy and model predictions are prevalence independent. It highlights how imperfect reference data may impact on a study and the actions that may be taken to address problems. Main conclusions The theoretical independence of prevalence of popular accuracy measures, such as sensitivity, specificity, true skills statistics (TSS) and area under the receiver operating characteristic curve (AUC), is unlikely to occur in practice due to reference data error; all of these measures of accuracy, together with estimates of species occurrence, showed prevalence dependency arising through the use of a non‐gold‐standard reference. The number of cases used also had implications for the ability of a study to meet its objectives. Means to reduce the negative effects of imperfect reference data in study design and interpretation are suggested.  相似文献   

9.
Species distribution modelling has become a common approach in ecology in the last decades. As in any modelling exercise, evaluation of the predicted suitability surfaces is a key process, and the area under the receiver operating characteristic (ROC) curve (AUC) has become the most popular statistic for this purpose. A close covariation between the AUC and threshold-dependent discrimination measures (sensitivity Se and specificity Sp) raises into question the advantage of the threshold-independence of the AUC. In this study, the relationship between the AUC and several threshold-dependent discrimination measures is characterized in detail, and the sensitivity of the pattern to variations in the shape of the ROC curve is assessed. Hypothetical suitability values, coming from normal and skew-normal distributions, were simulated for both instances of presence and absence. The flexibility of the skew-normal distribution allowed for the simulation of a wide range of ROC curve configurations. The relationship between the AUC and threshold-dependent measures was graphically assessed; independently of the ROC curve shape, a nonlinear asymptotic relationship between the AUC and Se (and Sp) was obtained after applying the threshold that makes Se = Sp. A nonlinear asymptotic relationship between the AUC and the Youden index was also reported. These results imply that the AUC does not appropriately measure changes in the discrimination of models, and it is especially incapable of distinguishing between models with high discrimination capacity. Se or Sp derived from the application of the threshold that makes them equal is a preferred measure of discrimination power. Together with the rate of false positives and negatives, and with the prevalence of the species, these statistics provide more information about the discrimination capacity of the models than the AUC.  相似文献   

10.
《植物生态学报》2017,41(4):387
Aims Predictive species distribution models (SDMs) are increasingly applied in resource assessment, environmental conservation and biodiversity management. However, most SDM models often yield a predicted probability (suitability) surface map. In conservation and environmental management practices, the information presented as species presence/absence (binary) may be more practical than presented as probability or suitability. Therefore, a threshold is needed to transform the probability or suitability data to presence/absence data. However, little is known about the effects of different threshold-selection methods on model performance and species range changes induced by future climate. Of the numerous SDM models, random forest (RF) can produce probabilistic and binary species distribution maps based on its regression and classification algorisms, respectively. Studies dealing with the comparative test of the performances of RF regression and classification algorisms have not been reported.
Methods Here, the RF was used to simulate the current and project the future potential distributions of Davidia involucrata and Cunninghamia lanceolata. Then, four threshold-setting methods (Default 0.5, MaxKappa, MaxTSS and MaxACC) were selected and used to transform modelled probabilities of occurrence into binary predictions of species presence and absence. Lastly, we investigated the difference in model performance among the threshold selection methods by using five model accuracy measures (Kappa, TSS, Overall accuracy, Sensitivity and Specificity). We also used the map similarity measure, Kappa, for a cell-by-cell comparison of similarities and differences of distribution map under current and future climates.
Important findings We found that the choice of threshold method altered estimates of model performance, species habitat suitable area and species range shifts under future climate. The difference in selected threshold cut-offs among the four threshold methods was significant for D. involucrata, but was not significant for C. lanceolata. Species’ geographic ranges changed (area change and shifting distance) in response to climate change, but the projections of the four threshold methods did not differ significantly with respect to how much or in which direction, but they did differ against RF classification predictions. The pairwise similarity analysis of binary maps indicated that spatial correspondence among prediction maps was the highest between the MaxKappa and the MaxTSS, and lowest between RF classification algorism and the four threshold-setting methods. We argue that the MaxTSS and the MaxKappa are promising methods for threshold selection when RF regression algorism is used for the distribution modeling of species. This study also provides promising insights to our understanding of the uncertainty of threshold selection in species distribution modeling.  相似文献   

11.
Forecasting of species and ecosystem responses to novel conditions, including climate change, is one of the major challenges facing ecologists at the start of the 21st century. Climate change studies based on species distribution models (SDMs) have been criticized because they extend correlational relationships beyond the observed data. Here, we compared conventional climate‐based SDMs against ecohydrological SDMs that include information from process‐based simulations of water balance. We examined the current and future distribution of Artemisia tridentata (big sagebrush) representing sagebrush ecosystems, which are widespread in semiarid western North America. For each approach, we calculated ensemble models from nine SDM methods and tested accuracy of each SDM with a null distribution. Climatic conditions included current conditions for 1970–1999 and two IPCC projections B1 and A2 for 2070–2099. Ecohydrological conditions were assessed by simulating soil water balance with SOILWAT, a daily time‐step, multiple layer, mechanistic, soil water model. Under current conditions, both climatic and ecohydrological SDM approaches produced comparable sagebrush distributions. Overall, sagebrush distribution is forecasted to decrease, with larger decreases under the A2 than under the B1 scenario and strong decreases in the southern part of the range. Increases were forecasted in the northern parts and at higher elevations. Both SDM approaches produced accurate predictions. However, the ecohydrological SDM approach was slightly less accurate than climatic SDMs (?1% in AUC, ?4% in Kappa and TSS) and predicted a higher number of habitat patches than observed in the input data. Future predictions of ecohydrological SDMs included an increased number of habitat patches whereas climatic SDMs predicted a decrease. This difference is important for understanding landscape‐scale patterns of sagebrush ecosystems and management of sagebrush obligate species for future conditions. Several mechanisms can explain the diverging forecasts; however, we need better insights into the consequences of different datasets for SDMs and how these affect our understanding of future trajectories.  相似文献   

12.

Aim

Species distribution data play a pivotal role in the study of ecology, evolution, biogeography and biodiversity conservation. Although large amounts of location data are available and accessible from public databases, data quality remains problematic. Of the potential sources of error, positional errors are critical for spatial applications, particularly where these errors place observations beyond the environmental or geographical range of species. These outliers need to be identified, checked and removed to improve data quality and minimize the impact on subsequent analyses. Manually checking all species records within large multispecies datasets is prohibitively costly. This work investigates algorithms that may assist in the efficient vetting of outliers in such large datasets.

Location

We used real, spatially explicit environmental data derived from the western part of Victoria, Australia, and simulated species distributions within this same region.

Methods

By adapting species distribution modelling (SDM), we developed a pseudo‐SDM approach for detecting outliers in species distribution data, which was implemented with random forest (RF) and support vector machine (SVM) resulting in two new methods: RF_pdSDM and SVM_pdSDM. Using virtual species, we compared eight existing multivariate outlier detection methods with these two new methods under various conditions.

Results

The two new methods based on the pseudo‐SDM approach had higher true skill statistic (TSS) values than other approaches, with TSS values always exceeding 0. More than 70% of the true outliers in datasets for species with a low and intermediate prevalence can be identified by checking 10% of the data points with the highest outlier scores.

Main conclusions

Pseudo‐SDM‐based methods were more effective than other outlier detection methods. However, this outlier detection procedure can only be considered as a screening tool, and putative outliers must be examined by experts to determine whether they are actual errors or important records within an inherently biased set of data.  相似文献   

13.
Presence‐only data present challenges for selecting thresholds to transform species distribution modeling results into binary outputs. In this article, we compare two recently published threshold selection methods (maxSSS and maxFpb) and examine the effectiveness of the threshold‐based prevalence estimation approach. Six virtual species with varying prevalence were simulated within a real landscape in southeastern Australia. Presence‐only models were built with DOMAIN, generalized linear model, Maxent, and Random Forest. Thresholds were selected with two methods maxSSS and maxFpb with four presence‐only datasets with different ratios of the number of known presences to the number of random points (KP–RPratio). Sensitivity, specificity, true skill statistic, and F measure were used to evaluate the performance of the results. Species prevalence was estimated as the ratio of the number of predicted presences to the total number of points in the evaluation dataset. Thresholds selected with maxFpb varied as the KP–RPratio of the threshold selection datasets changed. Datasets with the KP–RPratio around 1 generally produced better results than scores distant from 1. Results produced by We conclude that maxFpb had specificity too low for very common species using Random Forest and Maxent models. In contrast, maxSSS produced consistent results whichever dataset was used. The estimation of prevalence was almost always biased, and the bias was very large for DOMAIN and Random Forest predictions. We conclude that maxFpb is affected by the KP–RPratio of the threshold selection datasets, but maxSSS is almost unaffected by this ratio. Unbiased estimations of prevalence are difficult to be determined using the threshold‐based approach.  相似文献   

14.
Species distribution modelling (SDM) has become an essential method in ecology and conservation. In the absence of survey data, the majority of SDMs are calibrated with opportunistic presence‐only data, incurring substantial sampling bias. We address the challenge of correcting for sampling bias in the data‐sparse situations. We modelled the relative intensity of bat records in their entire range using three modelling algorithms under the point‐process modelling framework (GLMs with subset selection, GLMs fitted with an elastic‐net penalty, and Maxent). To correct for sampling bias, we applied model‐based bias correction by incorporating spatial information on site accessibility or sampling efforts. We evaluated the effect of bias correction on the models’ predictive performance (AUC and TSS), calculated on spatial‐block cross‐validation and a holdout data set. When evaluated with independent, but also sampling‐biased test data, correction for sampling bias led to improved predictions. The predictive performance of the three modelling algorithms was very similar. Elastic‐net models have intermediate performance, with slight advantage for GLMs on cross‐validation and Maxent on hold‐out evaluation. Model‐based bias correction is very useful in data‐sparse situations, where detailed data are not available to apply other bias correction methods. However, bias correction success depends on how well the selected bias variables describe the sources of bias. In this study, accessibility covariates described bias in our data better than the effort covariate, and their use led to larger changes in predictive performance. Objectively evaluating bias correction requires bias‐free presence–absence test data, and without them the real improvement for describing a species’ environmental niche cannot be assessed.  相似文献   

15.
Habitat suitability estimates derived from species distribution models (SDMs) are increasingly used to guide management of threatened species. Poorly estimating species’ ranges can lead to underestimation of threatened status, undervaluing of remaining habitat and misdirection of conservation funding. We aimed to evaluate the utility of a SDM, similar to the models used to inform government regulation of habitat in our study region, in estimating the contemporary distribution of a threatened and declining species. We developed a presence‐only SDM for the endangered New Holland Mouse (Pseudomys novaehollandiae) across Victoria, Australia. We conducted extensive camera trap surveys across model‐predicted and expert‐selected areas to generate an independent data set for use in evaluating the model, determining confidence in absence data from non‐detection sites with occupancy and detectability modelling. We assessed the predictive capacity of the model at thresholds based on (1) sum of sensitivity and specificity (SSS), and (2) the lowest presence threshold (LPT; i.e. the lowest non‐zero model‐predicted habitat suitability value at which we detected the species). We detected P. novaehollandiae at 40 of 472 surveyed sites, with strong support for the species’ probable absence from non‐detection sites. Based on our post hoc optimised SSS threshold of the SDM, 25% of our detection sites were falsely predicted as non‐suitable habitat and 75% of sites predicted as suitable habitat did not contain the species at the time of our survey. One occupied site had a model‐predicted suitability value of zero, and at the LPT, 88% of sites predicted as suitable habitat did not contain the species at the time of our survey. Our findings demonstrate that application of generic SDMs in both regulatory and investment contexts should be tempered by considering their limitations and currency. Further, we recommend engaging species experts in the extrapolation and application of SDM outputs.  相似文献   

16.
AimAvailability of uniformly collected presence, absence, and abundance data remains a key challenge in species distribution modeling (SDM). For invasive species, abundance and impacts are highly variable across landscapes, and quality occurrence and abundance data are critical for predicting locations at high risk for invasion and impacts, respectively. We leverage a large aquatic vegetation dataset comprising point‐level survey data that includes information on the invasive plant Myriophyllum spicatum (Eurasian watermilfoil) to: (a) develop SDMs to predict invasion and impact from environmental variables based on presence–absence, presence‐only, and abundance data, and (b) compare evaluation metrics based on functional and discrimination accuracy for presence–absence and presence‐only SDMs.LocationMinnesota, USA.MethodsEurasian watermilfoil presence–absence and abundance information were gathered from 468 surveyed lakes, and 801 unsurveyed lakes were leveraged as pseudoabsences for presence‐only models. A Random Forest algorithm was used to model the distribution and abundance of Eurasian watermilfoil as a function of lake‐specific predictors, both with and without a spatial autocovariate. Occurrence‐based SDMs were evaluated using conventional discrimination accuracy metrics and functional accuracy metrics assessing correlation between predicted suitability and observed abundance.ResultsWater temperature degree days and maximum lake depth were two leading predictors influencing both invasion risk and abundance, but they were relatively less important for predicting abundance than other water quality measures. Road density was a strong predictor of Eurasian watermilfoil invasion risk but not abundance. Model evaluations highlighted significant differences: Presence–absence models had high functional accuracy despite low discrimination accuracy, whereas presence‐only models showed the opposite pattern.Main conclusionComplementing presence–absence data with abundance information offers a richer understanding of invasive Eurasian watermilfoil''s ecological niche and enables evaluation of the model''s functional accuracy. Conventional discrimination accuracy measures were misleading when models were developed using pseudoabsences. We thus caution against the overuse of presence‐only models and suggest directing more effort toward systematic monitoring programs that yield high‐quality data.  相似文献   

17.
Aim The proportion of sampled sites where a species is present is known as prevalence. Empirical studies have shown that prevalence can affect the predictive performance of species distribution models. This paper uses simulated species data to examine how prevalence and the form of species environmental dependence affect the assessment of the predictive performance of models. Methods Simulated species data were based on various functions of simulated environmental data with differing degrees of spatial correlation. Seven model performance measures – sensitivity, specificity, class‐average (CA), overall prediction success, kappa (κ), normalized mutual information (NMI) and area under the receiver operating characteristic curve (AUC) – were applied to species models fitted by three regression methods. The response of the performance measures to prevalence was then assessed. Three probability threshold selection methods used to convert fitted logistic model values to presence or absence were also assessed. Results The study shows that the extent to which prevalence affects model performance depends on the modelling technique and its degree of success in capturing dominant environmental determinants. It also depends on the statistic used to measure model performance and the probability threshold method. The response based on κ generally preferred models with medium prevalence. All performance measures were least affected by prevalence when the probability threshold was chosen to maximize predictive performance or was based directly on prevalence. In these cases, the responses based on AUC, CA and NMI generally preferred models with small or large prevalence. Main conclusions The effect of prevalence on the predictive performance of species distribution models has a methodological basis. Relevant factors include the success of the fitted distribution model in capturing the dominant environmental determinant, the model performance measure and the probability threshold selection method. The fixed probability threshold method yields a marked response of model performance to prevalence and is therefore not recommended. The study explains previous empirical results obtained with real data.  相似文献   

18.
BB Hanberry  HS He  BJ Palik 《PloS one》2012,7(8):e44486

Background

Species distribution models require selection of species, study extent and spatial unit, statistical methods, variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species.

Methodology

We considered model outcomes from four different strategies for generating pseudoabsences. We generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability <25%, 3) selection from plots surveyed without detection of species presence, 4) a two-step process of selection first for pseudoabsences from plots surveyed without detection of species presence, followed by selection for pseudoabsences from the areas with predicted probability <25%. We used Random Forests as our statistical method and sixteen predictor variables to model tree species with at least 150 records from Forest Inventory and Analysis surveys in the Laurentian Mixed Forest province of Minnesota.

Conclusions

Pseudoabsence generation strategy completely affected the area predicted as present for species distribution models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between areas with high and low predicted probabilities and the strongest relationship between density and area with predicted probabilities ≥75%. Because of imperfect accuracy assessment, the best assessment currently may be evaluation of whether the species has been sufficiently but not excessively predicted to occur.  相似文献   

19.
物种分布模型的发展及评价方法   总被引:17,自引:0,他引:17  
物种分布模型已被广泛地应用于以保护区规划、气候变化对物种分布的影响等为目的的研究。回顾了已经得到广泛应用的多种物种分布模型,总结了评价模型性能的方法。基于物种分布模型的发展和应用以及性能评价中尚存在的问题,本文认为:在物种分布模型中集成样本选择模块能够避免模型预测过程中的过度拟合及欠拟合,增加变量选择模块可评估和降低变量之间自相关性的影响,增加生物因子以及将物种对环境的适应性机制(及扩散行为特征)和潜在分布模型进行结合,是提高模型预测性能的可行方案;在模型性能的评价方面,采用赤池信息量可对模型的预测性能进行客观评价。相关建议可为物种分布建模提供参考。  相似文献   

20.
Aim To assess the effect of local adaptation and phenotypic plasticity on the potential distribution of species under future climate changes. Trees may be adapted to specific climatic conditions; however, species range predictions have classically been assessed by species distribution models (SDMs) that do not account for intra‐specific genetic variability and phenotypic plasticity, because SDMs rely on the assumption that species respond homogeneously to climate change across their range, i.e. a species is equally adapted throughout its range, and all species are equally plastic. These assumptions could cause SDMs to exaggerate or underestimate species at risk under future climate change. Location The Iberian Peninsula. Methods Species distributions are predicted by integrating experimental data and modelling techniques. We incorporate plasticity and local adaptation into a SDM by calibrating models of tree survivorship with adaptive traits in provenance trials. Phenotypic plasticity was incorporated by calibrating our model with a climatic index that provides a measure of the differences between sites and provenances. Results We present a new modelling approach that is easy to implement and makes use of existing tree provenance trials to predict species distribution models under global warming. Our results indicate that the incorporation of intra‐population genetic diversity and phenotypic plasticity in SDMs significantly altered their outcome. In comparing species range predictions, the decrease in area occupancy under global warming conditions is smaller when considering our survival–adaptation model than that predicted by a ‘classical SDM’ calibrated with presence–absence data. These differences in survivorship are due to both local adaptation and plasticity. Differences due to the use of experimental data in the model calibration are also expressed in our results: we incorporate a null model that uses survival data from all provenances together. This model always predicts less reduction in area occupancy for both species than the SDM calibrated with presence–absence. Main conclusions We reaffirm the importance of considering adaptive traits when predicting species distributions and avoiding the use of occurrence data as a predictive variable. In light of these recommendations, we advise that existing predictions of future species distributions and their component populations must be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号