首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

To identify which factors distinguish ecologically successful mammalian clades (i.e., clades with a large combined range size) from less successful ones.

Location

Global.

Methods

We estimated the total range sizes for each individual mammalian subfamily and used phylogenetic regressions to identify the relative importance of factors related to colonization ability (body size and niche width) and adaptability (rate of evolution of body size and rate of evolution of climatic preference) in determining these ranges. We then estimated the importance of the same factors on the variation in diversification rate within mammals.

Results

We found strong support for a link between total range size and traits related to colonization ability. In particular, we found larger total range sizes among clades containing larger bodied species and clades with wider climatic niche width, while we did not find support for any predictors related to adaptability being linked to total range size. We also found that traits related to increased range size were associated with reduced diversification rate.

Main Conclusions

Range size for mammalian clades is mainly predicted by colonization ability, suggesting that most clades are limited by dispersal rather than their ability to adapt to new environments. The most ecologically successful (i.e., most widespread) mammalian clades tend to possess traits that reduce geographical isolation among populations, but the same traits tend to decrease diversification rates. Our results unveil a decoupling between evolutionary and ecological success in mammals.
  相似文献   

2.

Aim

One of the primary characteristics that determines the structure and function of marine food webs is the utilization and prominence of energy‐rich lipids. The biogeographical pattern of lipids throughout the ocean delineates the marine “lipidscape,” which supports lipid‐rich fish, mammal, and seabird communities. While the importance of lipids is well appreciated, there are no synoptic measurements or biogeographical estimates of the marine lipidscape. Productive lipid‐rich food webs in the pelagic ocean depend on the critical diapause stage of large pelagic copepods, which integrate lipid production from phytoplankton, concentrating it in space and time, and making it available to upper trophic levels as particularly energy‐rich wax esters. As an important first step towards mapping the marine lipidscape, we compared four different modelling approaches of copepodid diapause, each representing different underlying hypotheses, and evaluated them against global datasets.

Location

Global Ocean.

Taxon

Copepoda.

Methods

Through a series of global model runs and data comparisons, we demonstrated the potential for regional studies to be extended to estimate global biogeographical patterns of diapause. We compared four modelling approaches each designed from a different perspective: life history, physiology, trait‐based community ecology, and empirical relationships. We compared the resulting biogeographical patterns and evaluated the model results against global measurements of copepodid diapause.

Results

Models were able to resolve more than just the latitudinal pattern of diapause (i.e. increased diapause prevalence near the poles), but to also pick up a diversity of regions where diapause occurs, such as coastal upwelling zones and seasonal seas. The life history model provided the best match to global observations. The predicted global biogeographical patterns, combined with carbon flux estimates, suggested a lower bound of 0.031–0.25 Pg C yr?1 of downward flux associated with copepodid diapause.

Main conclusions

Results indicated a promising path forward for representing a detailed biogeography of the marine lipidscape and its associated carbon flux in global ecosystem and climate models. While complex models may offer advantages in terms of reproducing details of community structure, simpler theoretically based models appeared to best reproduce broad‐scale biogeographical patterns and showed the best correlation with observed biogeographical patterns.
  相似文献   

3.

Aim

Natural range expansions and human‐mediated colonizations usually involve a small number of individuals that establish new populations in novel habitats. In both cases, founders carry only a fraction of the total genetic variation of the source populations. Here, we used native and non‐native populations of the green anole, Anolis carolinensis, to compare the current distribution of genetic variation in populations shaped by natural range expansion and human‐mediated colonization.

Location

North America, Hawaiian Islands, Western Pacific Islands.

Methods

We analysed 401 mtDNA haplotypes to infer the colonization history of A. carolinensis on nine islands in the Pacific Ocean. We then genotyped 576 individuals at seven microsatellite loci to assess the levels of genetic diversity and population genetic differentiation for both the native and non‐native ranges.

Results

Our findings support two separate introductions to the Hawaiian Islands and several western Pacific islands, with subsequent colonizations within each region following a stepping‐stone model. Genetic diversity at neutral markers was significantly lower in the non‐native range because of founder effects, which also contributed to the increased population genetic differentiation among the non‐native regions. In contrast, a steady reduction in genetic diversity with increasing distance from the ancestral population was observed in the native range following range expansion.

Main conclusions

Range expansions cause serial founder events that are the spatial analogue of genetic drift, producing a pattern of isolation‐by‐distance in the native range of the species. In human‐mediated colonizations, after an initial loss of genetic diversity, founder effects appear to persist, resulting in overall high genetic differentiation among non‐native regions but an absence of isolation‐by‐distance. Contrasting the processes influencing the amount and structuring of genetic variability during natural range expansion and human‐mediated biological invasions can shed new light on the fate of natural populations exposed to novel and changing environments.
  相似文献   

4.

Aim

The distribution of marine predators is driven by the distribution and abundance of their prey; areas preferred by multiple marine predator species should therefore indicate areas of ecological significance. The Southern Ocean supports large populations of seabirds and marine mammals and is undergoing rapid environmental change. The management and conservation of these predators and their environment relies on understanding their distribution and its link with the biophysical environment, as the latter determines the distribution and abundance of prey. We addressed this issue using tracking data from 14 species of marine predators to identify important habitat.

Location

Indian Ocean sector of the Southern Ocean.

Methods

We used tracking data from 538 tag deployments made over a decade at the Subantarctic Prince Edward Islands. For each real track, we simulated a set of pseudo‐tracks that allowed a presence‐availability habitat modelling approach that estimates an animal's habitat preference. Using model ensembles of boosted regression trees and random forests, we modelled these tracks as a response to a set of 17 environmental variables. We combined the resulting species‐specific models to evaluate areas of mean importance.

Results

Real tracking locations covered 39.75 million km2, up to 7,813 km from the Prince Edward Islands. Areas of high mean importance were located broadly from the Subtropical Zone to the Polar Frontal Zone in summer and from the Subantarctic to Antarctic Zones in winter. Areas of high mean importance were best predicted by factors including wind speed, sea surface temperature, depth and current speed.

Main conclusions

The models and predictions developed here identify important habitat of marine predators around the Prince Edward Islands and can support the large‐scale conservation and management of Subantarctic ecosystems and the marine predators they sustain. The results also form the basis of future efforts to predict the consequences of environmental change.
  相似文献   

5.

Questions

Do vascular plant species richness and beta‐diversity differ between managed and structurally complex unmanaged stands? To what extent do species richness and beta‐diversity relate to forest structural attributes and heterogeneity?

Location

Five national parks in central and southern Italy.

Methods

We sampled vascular plant species composition and forest structural attributes in eight unmanaged temperate mesic forest stands dominated or co‐dominated by beech, and in eight comparison stands managed as high forests with similar environmental features. We compared plant species richness, composition and beta‐diversity across pairs of stands (unmanaged vs managed) using GLMM s. Beta‐diversity was quantified both at the scale of each pair of stands using plot‐to‐plot dissimilarity matrices (species turnover), and across the whole data set, considering the distance in the multivariate species space of individual plots from their centroid within the same stand (compositional heterogeneity). We modelled the relationship between species diversity (richness and beta‐diversity) and forest structural heterogeneity and individual structural variables using GLMM s and multiple regression on distance matrices.

Results

Species composition differed significantly between managed and unmanaged stands, but not richness and beta‐diversity. We found weak evidence that plant species richness increased with increasing levels of structural heterogeneity and canopy diversification. At the scale of individual stands, species turnover was explained by different variables in distinct stands, with variables related to deadwood quantity and quality being selected most often. We did not find support for the hypothesis that compositional heterogeneity varies as a function of forest structural characteristics at the scale of the whole data set.

Conclusions

Structurally complex unmanaged stands have a distinct herb layer species composition from that of mature stands in similar environmental conditions. Nevertheless, we did not find significantly higher levels of vascular plant species richness and beta‐diversity in unmanaged stands. Beta‐diversity was related to patterns of deadwood accumulation, while for species richness the evidence that it increases with increasing levels of canopy diversification was weak. These results suggest that emulating natural disturbance, and favouring deadwood accumulation and canopy diversification may benefit some, but not all, facets of plant species diversity in Apennine beech forests.
  相似文献   

6.

Aim

Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale.

Location

Western Eurasia.

Time period

1980s–2016.

Major taxa studied

‘Comb jelly’ Mnemiopsis leidyi.

Methods

Based on 12,400 geo‐referenced occurrence data, we reconstruct the invasion history of M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match the temporal and spatial spread dynamics with large‐scale connectivity patterns via ocean currents. Additionally, genetic markers are used to test the predicted connectivity between subpopulations.

Results

Ocean currents can explain secondary spread dynamics, matching observed range expansions and the timing of first occurrence of our holoplanktonic non‐native biological probe species, leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after cold winters were followed by rapid recolonizations at a speed of up to 2,000 km per season. Source areas hosting year‐round populations in highly interconnected regions can re‐seed genotypes over large distances after local extinctions.

Main conclusions

Although the release of ballast water from container ships may contribute to the dispersal of non‐native species, our results highlight the importance of ocean currents driving secondary spread dynamics. Highly interconnected areas hosting invasive species are crucial for secondary spread dynamics on a continental scale. Invasion risk assessments should consider large‐scale connectivity patterns and the potential source regions of non‐native marine species.
  相似文献   

7.

Aim

Floristic and faunal diversity fall within species assemblages that can be grouped into distinct biomes or ecoregions. Understanding the origins of such biogeographic assemblages helps illuminate the processes shaping present‐day diversity patterns and identifies regions with unique or distinct histories. While the fossil record is often sparse, dated phylogenies can provide a window into the evolutionary past of these regions. Here, we present a novel phylogenetic approach to investigate the evolutionary origins of present‐day biogeographic assemblages and highlight their conservation value.

Location

Southern Africa.

Methods

We evaluate the evolutionary turnover separating species clusters in space at different time slices to determine the phylogenetic depth at which the signal for their present‐day structure emerges. We suggest present‐day assemblages with distinct evolutionary histories might represent important units for conservation. We apply our method to the vegetation of southern Africa using a dated phylogeny of the woody flora of the region and explore how the evolutionary history of vegetation types compares to common conservation currencies, including species richness, endemism and threat.

Results

We show the differentiation of most present‐day vegetation types can be traced back to evolutionary splits in the Miocene. The woody flora of the Fynbos is the most evolutionarily distinct, and thus has deeper evolutionary roots, whereas the Savanna and Miombo Woodland show close phylogenetic affinities and likely represent a more recent separation. However, evolutionarily distinct phyloregions do not necessarily capture the most unique phylogenetic diversity, nor are they the most species‐rich or threatened.

Main conclusions

Our approach complements analyses of the fossil record and serves as a link to the history of diversification, migration and extinction of lineages within biogeographic assemblages that is separate from patterns of species richness and endemism. Our analysis reveals how phyloregions capture conservation value not represented by traditional biodiversity metrics.
  相似文献   

8.

Objective

The objective of the study was to examine the mediating role of sleep quality and quantity in the relationship between food insecurity and obesity across races/ethnicities.

Methods

Bivariate negative binomial regression and multinomial logistic regression were used to examine direct associations between food insecurity and sleep quality and quantity among non‐Hispanic Native Hawaiian and other Pacific Islanders (NHPI) relative to non‐Hispanic White, Black, Asian, and Hispanic individuals with obesity. The potential outcomes approach and adjusted Wald test were used to explore the mediating role of sleep quality and quantity and the moderating role of race/ethnicity, respectively.

Results

Among adults with obesity, the study found a positive and direct relationship between food insecurity and trouble falling asleep in each racial/ethnic group. Trouble staying asleep was associated with food insecurity in each racial/ethnic group, except in the Asian group. Positive and direct associations were observed between food insecurity and short/very short sleep. A positive and direct relationship was found between food insecurity and having obesity in each racial/ethnic group, except in the Black group. Sleep quality and sleep quantity partially mediated the relationship between food insecurity and obesity in non‐Hispanic NHPI, White, Asian, and Hispanic individuals. Race/ethnicity moderated the indirect effects of food insecurity on sleep quality and quantity.

Conclusions

Food security and sleep hygiene should be an integral part of the fight against obesity.
  相似文献   

9.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

10.

Motivation

The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.

Main types of variables included

The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.

Spatial location and grain

BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).

Time period and grain

BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.

Major taxa and level of measurement

BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.

Software format

.csv and .SQL.
  相似文献   

11.

Questions

Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent?

Location

Heathy woodland, Otways region, Victoria, southeast Australia

Methods

We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling.

Results

At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors.

Conclusions

Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  相似文献   

12.
K. Ba  Y. Fu  X. Wei  Y. Yue  G. Li  Y. Yao  J. Chen  X. Cai  C. Liang  Y. Ge  Y. Lin 《Cell proliferation》2013,46(3):312-319

Objective

The aim of this study was to investigate effects of low‐intensity pulsed ultrasound (LIPUS) on differentiation of adipose‐derived stem cells (ASCs), in vitro.

Materials and methods

Murine ASCs were treated with LIPUS for either three or five days, immediately after adipogenic induction, or delayed for 2 days. Expression of adipogenic genes PPAR‐γ1, and APN, was examined by real‐time PCR. Immunofluorescence (IF) staining was performed to test for PPAR‐γ at the protein level.

Results

Our data revealed that specific patterns of LIPUS up‐regulated levels of both PPAR‐γ1 and APN mRNA, and PPAR‐γ protein.

Conclusions

In culture medium containing adipogenic reagents, LIPUS enhanced ASC adipogenesis.
  相似文献   

13.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

14.
15.

Objectives

Donor specific antibodies (DSA) and a positive cross‐match are contraindications for kidney transplantation. Trials of allograft transplantation across the HLA barrier have employed desensitization strategies, including the use of plasmapheresis, intravenous immunoglobulins, anti‐B‐cell monoclonal antibodies and splenectomy, associated with high‐intensity immunosuppressive regimens. Our case 1 report suffered from repeatedly positive lymphocyte cross match after 1st renal transplantation. Graft nephrectomy could not correct the state of sensitization. Splenectomy was done in a trial to get rid of the antibody producing clone. Furthermore plasmapheresis with low dose IVIG could not as well revert the state of sensitization for the patient.

Material and methods

About 50 millions donor specific MSCs were injected to the patient.

Results

MSCs transfusion proved to be the only procedure which could achieve successful desensitization before performing the second transplantation owing to their immunosuppressive properties.

Conclusion

This case indicates that DS‐MSCs is a potential option for anti‐HLA desensitization. In cases 2 and 3 IV DS‐MSCs transfusion was selected from the start as a successful line of treatment for pre renal transplantation desensitization to save other unnecessary lines of treatment that were tried in case 1.
  相似文献   

16.

Background

Fibrosis involves the activation of inflammatory cells, leading to a decrease in physiological function of the affected organ or tissue.

Aims

To update and synthesize relevant information concerning fibrosis into a new hypothesis to explain the pathogenesis of fibrosis and propose potential novel therapeutic approaches.

Materials and Methods

Literature was reviewed and relevant information is discussed in the context of the pathogenesis of fibrosis.

Results

A number of cytokines and their mRNA are involved in the circulatory system and in organs of patients with fibrotic tissues. The profibrotic cytokines are generated by several activated immune cells, including fibroblasts and mast cells (MCs), which are important for tissue inflammatory responses to different types of injury. MC‐derived TNF, IL‐1, and IL‐33 contribute crucially to the initiation of a cascade of the host defence mechanism(s), leading to the fibrosis process. Inhibition of TNF and inflammatory cytokines may slow the progression of fibrosis and improve the pathological status of the affected subject. IL‐37 is generated by various types of immune cells and is an IL‐1 family member protein. IL‐37 is not a receptor antagonist; it binds IL‐18 receptor alpha (IL‐18Rα) and delivers the inhibitory signal by using TIR8. It has been shown that IL‐37 can be protective in inflammation and injury, and inhibits both innate and adaptive immunity.

Discussion

IL‐37 may be useful for suppression of inflammatory diseases induced by inhibiting MyD88‐dependent TLR signalling. In addition, IL‐37 downregulates NF‐κB induced by TLR2 or TLR4 through a mechanism dependent on IL‐18Rα.

Conclusion

This review summarizes current knowledge on the role of MC in inflammation and tissue/organ fibrosis, with a focus on the therapeutic potential of IL‐37‐targeting cytokines.
  相似文献   

17.

Objectives

In this study, we have evaluated effects of 24‐hour treatments with simvastatin or rosuvastatin on RAS protein, NF‐κB and MMP expression in LC tissues obtained from 12 patients undergoing thoracic surgery.

Materials and methods

Normal and lung tumour tissues obtained from each sample were exposed to simvastatin (2.5–30 μm ) or rosuvastatin (1.25–30 μm ) and western blot analysis was then performed.

Results

We documented increased expression of proteins, MMP‐2, MMP‐9 and NF‐κB‐p65 in LC tissues, with respect to normal tissues (P < 0.01). In the malignant tissues, simvastatin and rosuvastatin significantly (P < 0.01) and dose‐dependently reduced RAS protein, MMP‐2/9 and NF‐κB‐p65 expression.

Conclusions

In conclusion, our results suggest that simvastatin and rosuvastatin could play a role in LC treatment by modulation of RAS protein, MMP‐2/9 and NF‐κB‐p65.
  相似文献   

18.

Objectives

Holocene hunter‐gatherers adapted to climatic and environmental changes over time. Carbon and nitrogen stable isotope analysis of human skeletal remains from the Inariyama shell mound of the Final Jomon period have revealed large dietary variations in the population. This study analyzed radiocarbon dates of these individuals to test temporal changes in diet and its relationship with tooth ablation.

Materials and Methods

Twenty‐nine human skeletal remains from Inariyama were included in this study. Extracted bone collagen samples were purified to graphite. Then, radiocarbon dating of these samples was performed using the accelerator mass spectrometer.

Results

The radiocarbon ages of Inariyama ranged about, 3,230–2,140 cal BP and showed three peaks of occupation. In the early and late phases, terrestrial resource consumption and incisor extraction were observed, while marine resource consumption and canine extraction were observed in the middle phase.

Discussion

These temporal changes of diet and tooth ablation types occurred in parallel with climatic cooling and environmental change and help reveal how Holocene hunter‐gatherers adapted to the changing environments.
  相似文献   

19.
20.

Aim

Archipelagos provide ideal natural systems for testing the effects of isolation and fragmentation of habitats on the genetic makeup of populations—an important consideration, given that many insular species are of conservation concern. Two theories predominate: Island Biogeography Theory (IBT) posits that proximity to the mainland drives the potential for migrants and gene flow. The Central Marginal Hypothesis (CMH) predicts that island populations at the periphery of a species range may experience low gene flow, small population size and high rates of genetic drift. We investigated population genetic structure, genetic diversity and key drivers of diversity for Arctic island‐dwelling caribou (Rangifer tarandus). Our aim was to inform intraspecific units for conservation and decipher how IBT and CMH could act in an archipelago where isolation is highly variable due to sea ice and open water.

Location

Canadian Arctic Archipelago, Canada (Latitude, 55–82°N; Longitude, 61–123°W).

Methods

We genotyped 447 caribou at 16 microsatellite loci; these caribou represented two subspecies (R. t. groenlandicus, R. t. pearyi) and three designatable units. We used hierarchical Bayesian clustering and ordination to determine genetic groups. We evaluated the influence of ecological and geographic variables on genetic diversity using linear mixed‐effects models and compared diversity among mainland and island herds.

Results

Bayesian clustering revealed nine genetic clusters with differentiation among and within caribou subspecies. Genetic differentiation was explained predominantly by isolation‐by‐distance across all caribou, even at the scale of subspecies. Island caribou were less genetically diverse than mainland herds; individual heterozygosity was negatively correlated with distance‐to‐mainland and the extent of autumn ice‐free coastline and positively correlated with unglaciated island size.

Main conclusions

Our findings underscore the importance of hierarchical analysis when investigating genetic population structure. Genetic diversity and its key drivers lend support to both IBT and CMH and highlight the pending threat of climate change for Arctic island caribou.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号