首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Species distribution models are commonly used to predict species responses to climate change. However, their usefulness in conservation planning and policy is controversial because they are difficult to validate across time and space. Here we capitalize on small mammal surveys repeated over a century in Yosemite National Park, USA, to assess accuracy of model predictions. Historical (1900–1940) climate, vegetation, and species occurrence data were used to develop single‐ and multi‐species multivariate adaptive regression spline distribution models for three species of chipmunk. Models were projected onto the current (1980–2007) environmental surface and then tested against modern field resurveys of each species. We evaluated models both within and between time periods and found that even with the inclusion of biotic predictors, climate alone is the dominant predictor explaining the distribution of the study species within a time period. However, climate was not consistently an adequate predictor of the distributional change observed in all three species across time. For two of the three species, climate alone or climate and vegetation models showed good predictive performance across time. The stability of the distribution from the past to present observed in the third species, however, was not predicted by our modeling approach. Our results demonstrate that correlative distribution models are useful in understanding species' potential responses to environmental change, but also show how changes in species‐environment correlations through time can limit the predictive performance of models.  相似文献   

3.
Aim Species distribution models are a potentially powerful tool for predicting the effects of global change on species distributions and the resulting extinction risks. Distribution models rely on relationships between species occurrences and climate and may thus be highly sensitive to georeferencing errors in collection records. Most errors will not be caught using standard data filters. Here we assess the impacts of georeferencing errors and the importance of improved data filtering for estimates of the elevational distributions, habitat areas and predicted relative extinction risks due to climate change of nearly 1000 Neotropical plant species. Location The Amazon basin and tropical Andes, South America. Methods We model the elevational distributions, or ‘envelopes’, of 932 Amazonian and Andean plant species from 35 families after performing standard data filtering, and again using only data that have passed through an additional layer of data filtering. We test for agreement in the elevations recorded with the collection and the elevation inferred from a digital elevation model (DEM) at the collection coordinates. From each dataset we estimate species range areas and extinction risks due to the changes in habitat area caused by a 4.5 °C increase in temperature. Results Amazonian and Andean plant species have a median elevational range of 717 m. Using only standard data filters inflates range limits by a median of 433 m (55%). This is equivalent to overestimating the temperature tolerances of species by over 3 °C – only slightly less than the entire regional temperature change predicted over the next 50–100 years. Georeferencing errors tend to cause overestimates in the amount of climatically suitable habitat available to species and underestimates in species extinction risks due to global warming. Georeferencing error artefacts are sometimes so great that accurately predicting whether species habitat areas will decrease or increase under global warming is impossible. The drawback of additional data filtering is large decreases in the number of species modelled, with Andean species being disproportionately eliminated. Main conclusions Even with rigorous data filters, distribution models will mischaracterize the climatic conditions under which species occur due to errors in the collection data. These errors affect predictions of the effects of climate change on species ranges and biodiversity, and are particularly problematic in mountainous areas. Additional data filtering reduces georeferencing errors but eliminates many species due to a lack of sufficient ‘clean’ data, thereby limiting our ability to predict the effects of climate change in many ecologically important and sensitive regions such as the Andes Biodiversity Hotspot.  相似文献   

4.
5.
6.
7.
8.
Climate envelope models (CEMs) have been used to predict the distribution of species under current, past, and future climatic conditions by inferring a species' environmental requirements from localities where it is currently known to occur. CEMs can be evaluated for their ability to predict current species distributions but it is unclear whether models that are successful in predicting current distributions are equally successful in predicting distributions under different climates (i.e. different regions or time periods). We evaluated the ability of CEMs to predict species distributions under different climates by comparing their predictions with those obtained with a mechanistic model (MM). In an MM the distribution of a species is modeled based on knowledge of a species' physiology. The potential distributions of 100 plant species were modeled with an MM for current conditions, a past climate reconstruction (21 000 years before present) and a future climate projection (double preindustrial CO2 conditions). Point localities extracted from the currently suitable area according to the MM were used to predict current, future, and past distributions with four CEMs covering a broad range of statistical approaches: Bioclim (percentile distributions), Domain (distance metric), GAM (general additive modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly underestimating range sizes for past or future conditions. Maxent and GAM performed as well under current climates as under past and future climates. Bioclim slightly underestimated range sizes but the predicted ranges overlapped more with the ranges predicted with the MM than those predicted with GAM did. Ranges predicted with Maxent overlapped most with those produced with the MMs, but compared with the ranges predicted with GAM they were more variable and sometimes much too large. Our results suggest that some CEMs can indeed be used to predict species distributions under climate change, but individual modeling approaches should be validated for this purpose, and model choice could be made dependent on the purpose of a particular study.  相似文献   

9.
Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad‐scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment‐only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment‐only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions.  相似文献   

10.
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied), the instability of suitable area (Einstability) and the overlap between the current and future spatial distribution (Eoverlap). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence.  相似文献   

11.
12.
Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche‐modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population‐level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.  相似文献   

13.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

14.
We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates.  相似文献   

15.
A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.  相似文献   

16.
17.
18.
19.
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south‐eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent . After superimposing the present‐day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre‐ and post‐deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre‐ and post‐deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large‐scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra‐specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present‐day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra‐specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.  相似文献   

20.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号