首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A procedure was developed for overexpression ofTrypanosoma bruceipyruvate kinase inEscherichia coli.The enzyme was purified to near-homogeneity from the bacterial lysate by first removing nucleic acids and contaminating proteins by protamine sulfate precipitation and subsequent passage over a phosphocellulose column. The purified protein is essentially indistinguishable in its physicochemical and kinetic properties from the enzyme purified from trypanosomes. Furthermore, experiments were undertaken to locate the binding site of the allosteric effector fructose 2,6-bisphosphate. Regulation of pyruvate kinase by this effector is unique to trypanosomes and related protozoan organisms. Therefore, a three-dimensional structure model of the enzyme was made, and a putative effector-binding site could be identified in an interdomain cleft. Four residues in this cleft were mutated, and the mutant proteins were produced and purified, using the same methodology as for the wild-type pyruvate kinase. Some mutants showed only minor changes in the activation by the effector. However, substitution of Arg22 by Gly resulted in a 9.2-fold higherS0.5for phosphoenolpyruvate and a significantly smallerkcatthan the wild-type enzyme. Furthermore, the apparent affinity of this mutant for the allosteric effectors fructose 1,6-bisphosphate and fructose 2,6-bisphosphate was 8.2- and 5.2-fold lower than that of its wild-type counterpart. Effector binding was also affected, although to a lesser extent, in a mutant Phe463Val. These data indicate that particularly residue Arg22, but also Phe463, are somehow involved in the binding of the allosteric effectors.  相似文献   

2.
1. Ox heart phosphofructokinase catalyses isotope-exchange reactions at pH6.7 between ADP and ATP, and between fructose 6-phosphate and fructose 1,6-diphosphate, the latter reaction being absolutely dependent on the presence of the magnesium complex of ADP. 2. The reaction kinetics are hyperbolic with respect to substrate concentration for both exchange reactions (within the experimental error). 3. The influence of pH, AMP and citrate suggests that the fructose 6-phosphate-fructose 1,6-diphosphate exchange is subject to effector control, and is abolished by dissociation of the enzyme. 4. These results are discussed in relation to the reaction mechanism of the enzyme.  相似文献   

3.
The kinetics of pyruvate kinase from Saccharomyces cerevisiae were studied in assays at pH 6.2 at 25 degrees C as a function of the concentrations of the substrates ADP, phosphoenolpyruvate and Mg2+ and the concentration of the effector fructose 1,6-bisphosphate. The enzyme was activated by 100 mM-K+ and 32 mM-NH4+ throughout. It was found that an increase in the fructose bisphosphate concentration from 24 microM to 1.2 mM brings about a transition from a sigmoidal to a non-inflected form in the relationships v = f([phosphoenolpyruvate]) and v = f([Mg2+]) together with a large increase in the affinity of these substrates for the enzyme. The binding behaviour of ADP is barely affected by the same change in effector concentration. By contrast, increase in fructose bisphosphate concentration below 24 microM increases the affinity of the enzyme for all its substrates and the sigmoidicity of the corresponding velocity-substrate-concentration relationships. As a result of this change in behaviour it has been found impossible to represent all the data by the exponential model for a regulatory enzyme, and it is suggested (supported by comparisons with previous work) that the failure may reflect a secondary action of the effector upon the enzyme.  相似文献   

4.
Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis—the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs—from Saccharomyces cerevisiae and rabbit skeletal muscle—demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.  相似文献   

5.
Kinetic properties of spermine synthase from bovine brain.   总被引:4,自引:0,他引:4       下载免费PDF全文
Phosphofructokinase (EC 2.7.1.11) from a citric acid-producing strain of Aspergillus niger was partially purified by the application of affinity chromatography on Blue Dextran--Sepharose and the use of fructose 6-phosphate and glycerol as stabilizers in the working buffer. The resulting preparation was still impure, but free of enzyme activities interfering with kinetic investigations. Kinetic studies showed that the enzyme exhibits high co-operativity with fructose 6-phosphate, but shows Michaelis--Menten kinetics with ATP, which inhibits at concentrations higher than those for maximal activity. Citrate and phosphoenolpyruvate inhibit the enzyme; citrate increases the substrate (fructose 6-phosphate) concentration for half-maximal velocity, [S]0.5, and the Hill coefficient, h. The inhibition by citrate is counteracted by NH4+, AMP and phosphate. Among univalent cations tested only NH4+ activates by decreasing the [S]0.5 for fructose 6-phosphate and h, but has no effect on Vmax. AMP and ADP activate at low and inhibit at high concentrations of fructose 6-phosphate, thereby decreasing the [S]0.5 for fructose 6-phosphate. Phosphate has no effect in the absence of citrate. The results indicate that phosphofructokinase from A. niger is a distinct species of this enzyme, with some properties similar to those of the yeast enzyme and in some other properties resembling the mammalian enzyme. The results of determinations of activity at substrate and effector concentrations resembling the conditions that occur in vivo support the hypothesis that the apparent insensitivity of the enzyme to citrate during the accumulation of citric acid in the fungus is due to counteraction of citrate inhibition by NH4+.  相似文献   

6.
Extracellular invertase of Rhizobium japonicum and its role in free sugar metabolism in the developing root nodules of Sesbania grandiflora L. was studied. The enzyme hydrolysed sucrose extracellularly, and its release was substrate inducible. 0.1 Mβ-mercaptoethanol released the cell-bound form of this enzyme. The production of invertase was low when glucose, galactose, mannose, fructose and raffinose were used as carbon sources in the growth medium. In the developing nodules sucrose was the major sugar. The content of fructose was low in comparison with that of glucose – suggesting that in the nodules, fructose is converted to glucose prior to its entry into the bacterial cell. The content of glucose synchronised with the pattern of change in the activity of invertase in the nodules.  相似文献   

7.
The higher plant ADP-glucose (ADPG) pyrophosphorylase (AGPase), composed of two small subunits and two large subunits (LSs), produces ADPG, the sole substrate for starch biosynthesis from α-D-glucose 1-phosphate and ATP. This enzyme controls a key step in starch synthesis as its catalytic activity is activated by 3-phosphoglycerate (3-PGA) and inhibited by orthophosphate (Pi). Previously, two mutations in the LS of potato AGPase (PLS), PLS-E38K and PLS-G101N, were found to increase sensitivity to 3-PGA activation and tolerance to Pi inhibition. In the present study, the double mutated enzyme (PLS-E38K/G101N) was evaluated. In a complementation assay of ADPG synthesis in an Escherichia coli mutant defective in the synthesis of ADPG, expression of PLS-E38K/G101N mediated higher glycogen production than wild-type potato AGPase (PLS-WT) and the single mutant enzymes, PLS-E38K and PLS-G101N, individually. Purified PLS-E38K/G101N showed higher sensitivity to 3-PGA activation and tolerance to Pi inhibition than PLS-E38K or PLS-G101N. Moreover, the enzyme activities of PLS-E38K, PLS-G101N, and PLS-E38K/G101N were more readily stimulated by other major phosphate-ester metabolites, such as fructose 6-phosphate, fructose 2,6-bisphosphate, and ribose 5-phosphate, than was that of PLS-WT. Hence, although the specific enzyme activities of the LS mutants toward 3-PGA were impaired to some extent by the mutations, our results suggest that their enhanced allosteric regulatory properties and the broadened effector selectivity gained by the same mutations not only offset the lowered enzyme catalytic turnover rates but also increase the net performance of potato AGPase in vivo in view of increased glycogen production in bacterial cells.  相似文献   

8.
Owing to its role in controlling carbon and energy metabolism, the catabolite repressor/activator protein Cra has been one of the most studied prokaryotic regulators of the last 30 years. Yet, a key mechanistic detail of its biological function – i.e. the nature of the metabolic effector that rules its DNA‐binding ability – has remained controversial. Despite the high affinity of Cra for fructose‐1‐phosphate (F1P), the prevailing view claimed that fructose‐1,6‐biphosphate (FBP) was the key physiological effector. Building on such responsiveness to FBP, Cra was proposed to act as a glycolytic flux sensor and central regulator of critical metabolic transactions. At the same time, data raised on the Cra protein of Pseudomonas putida ruled out that FBP could be an effector – but instead suggested that it was the unintentional carrier of a small contamination by F1P, the actual signal molecule. While these data on the P. putida Cra were received with skepticism – if not dismissal – by the community of the time, the paper by (Bley‐Folly et al, 2018) now demonstrates beyond any reasonable doubt that the one and only effector of E. coli Cra is F1P and that every action of FBP on this regulator can be traced to its systematic mix with the authentic binder.  相似文献   

9.
A β-d-fructofuranosidase from Claviceps purpurea   总被引:1,自引:0,他引:1       下载免费PDF全文
Evidence suggests that sucrose is the main carbon source for growth of Claviceps spp. in the parasitic condition. The sucrose acts as substrate for an active beta-fructofuranosidase, produced by the fungus, which in the first instance converts the disaccharide into glucose and an oligofructoside. In this way, 50% of the glucose, supplied as sucrose, is made available to the parasite for assimilation. Subsequent action of the enzyme on both sucrose and the oligofructoside leads to the release of more glucose and the formation of additional oligosaccharides. The structures of the main oligosaccharides formed have been elucidated and the interactions of each compound studied. In experiments with purified enzyme in vitro the interaction of the oligosaccharides is rapid but in culture they are assimilated only slowly; in each case some free fructose is liberated. Free fructose is not assimilated in the presence of glucose and, further, inhibits growth at concentrations which might be expected to occur in the parasitic condition. A dual role has been suggested for the enzyme, with sucrose as substrate, in which glucose is made available to the growing parasite, while at the same time transfer of the fructose to form oligosaccharides prevents it from accumulating at inhibitory concentrations. Ultimately, when glucose becomes limiting, the fungus will adapt to fructose assimilation.  相似文献   

10.
Pig spleen phosphofructokinase has been purified 800-fold with a yield of 17%. Two isoenzymes that appear to be kinetically identical can be separated by DEAE-cellulose column chromatography. In common with the enzyme from other mammalian sources, the spleen enzyme has a pH optimum of 8.2. At pH 7.0 it displays sigmoidal kinetics with respect to fructose 6-phosphate concentration but its co-operative behaviour is very dependent on pH, protein concentration and the concentration of MgATP. MgGTP and MgITP can replace MgATP as phosphate donors but, unlike MgATP, these nucleotides do not cause significant inhibition. Mn2+ and Co2+ (as the metal ion-ATP complexes) act as cofactors and in the free form are far more inhibitory than free Mg2+. The spleen enzyme responds to a wide variety of potential effector molecules: ADP, AMP, cyclic AMP, aspartate, NH4+, fructose 6-phosphate, fructose 1,6-diphosphate and Pi all act as either activators or protectors, whereas Mg-ATP, Mg2+, citrate, phosphoenol-pyruvate and the phosphoglucerates are inhibitors.  相似文献   

11.
Both the synthesis and the degradation of Fru-2,6-P2 are catalyzed by a single enzyme protein; ie, the enzyme is bifunctional. This protein, which we have designated 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase is an important enzyme in the regulation of hepatic carbohydrate metabolism since its activity determines the steady-state concentration of fructose 2,6-P2, an activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. Regulation of the bifunctional enzyme in intact cells is a complex function of both covalent modification via phosphorylation/dephosphorylation and the influence of substrates and low molecular weight effectors. Recent evidence suggests that both reactions may proceed by two-step transfer mechanisms with different phosphoenzyme intermediates. The enzyme catalyzes exchange reactions between ADP and ATP and between fructose 6-P and fructose 2,6-P2. A labeled phosphoenzyme is formed rapidly during incubation with [2-32P]Fru-2,6-P2. The labeled residue has been identified as 3-phosphohistidine. However, it was not possible to demonstrate significant labeling of the enzyme directly from [gamma-32P]ATP. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a fructose 2,6-bisphosphatase site which is readily phosphorylated by fructose 2,6-P2. Additional evidence in support of two active sites include: limited proteolysis with thermolysin results in loss of 6-phosphofructo 2-kinase activity and activation of fructose 2,6-bisphosphatase, mixed function oxidation results in inactivation of the 6-phosphofructo 2-kinase but no affect on the fructose 2,6-bisphosphatase, N-ethylmaleimide treatment also inactivates the kinase but does not affect the bisphosphatase, and p-chloromercuribenzoate immediately inactivates the fructose 2,6-bisphosphatase but not the 6-phosphofructo 2-kinase. Our findings indicate that the bifunctional enzyme is a rather complicated enzyme; a dimer, probably with two catalytic sites reacting with sugar phosphate, and with an unknown number of regulatory sites for most of its substrates and products. Three enzymes from Escherichia coli, isocitric dehydrogenase kinase/phosphatase, glutamine-synthetase adenylyltransferase, and the uridylyltransferase for the regulatory protein PII in the glutamine synthetase cascade system also catalyze opposing reactions probably at two discrete sites. All four enzymes are important in the regulation of metabolism and may represent a distinct class of regulatory enzymes.  相似文献   

12.
Rabbit muscle aldolase in situ appears to undergo several modification reactions. One of these, specific deamidation of an asparagine residue near the COOH-terminus, appears to account for the presence of two types of subunits in the enzyme isolated from the muscle of adult rabbits. Evidence for a second modification is the presence of approximately one equivalent of organic phosphorus in the crystalline enzyme preparations. The presence of this phosphate group may be related to the incomplete release of COOH-terminal tyrosine residues from the enzyme protein with carboxypeptidase. Two reactions with substrate, both leading to the incorporation of organic phosphorus, have been demonstrated in vitro. A reaction with glyceraldehyde 3-phosphate or erythrose 4-phosphate leads to loss of catalytic activity and change in the susceptibility of COOH-terminus to carboxypeptidase. The other reaction, with fructose 1,6-diphosphate at low concentration, does not affect the activity of the enzyme, nor its susceptibility towards the action of carboxypeptidase. Either or both of these may be related to the changes which appear to occur during the life of the enzyme in vivo.  相似文献   

13.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   

14.
The distribution of enzymes interconverting fructose 6-phosphate and fructose 1,6-bisphosphate has been studied in a range of tissues from castor bean seedlings. In each tissue the activity of PPi:fructose 6-phosphate phosphotransferase was greater than phosphofructokinase and substantial compared with fructose 1,6-bisphosphatase. PPi:fructose 6-phosphate phosphotransferase in endosperm is apparently confined to the cytoplasm. The role of this latter enzyme in vivo is discussed.  相似文献   

15.
G Le Bras  J R Garel 《Biochemistry》1986,25(9):2490-2493
The limited proteolysis of Escherichia coli phosphofructokinase by subtilisin involves the removal of a segment of 40-50 residues at the C-terminal end of each polypeptide chain [Le Bras, G., & Garel, J.R. (1985) J. Biol. Chem. 260, 13450-13453]. The time course of proteolysis has been followed by the appearance of shorter chains, the loss of allosteric inhibition by phosphoenolpyruvate, and the weakening of the tetrameric structure in the absence of fructose 6-phosphate. It is found that with only one shorter chain out of four the stability of the tetramer is altered so that it is no longer stable in the absence of fructose 6-phosphate. Also, the reduction in size of only two chains is sufficient to render the enzyme insensitive to allosteric effectors, albeit the protein still possesses the ability to bind such an effector (at least partially); the cleavage of all four chains is needed to lose all the effector binding ability. The C-terminal segment therefore plays an important role in subunit interactions as seen from the gradual changes in structural and functional properties which follow its removal from one, two, or four chains.  相似文献   

16.
A general procedure has been developed to model the behaviour of enzymatic reactions in a membrane bioreactor. This procedure unifies the kinetics of the reaction and the adsorption of the enzyme or enzymatic complexes on the membrane, enabling the selection of the most appropriate kinetic model. The general procedure proposed has been particularized and applied to experimental results obtained with two enzymatic reactions carried out in a hollow-fibre reactor, enzymatic hydrolysis of lactose by β-galactosidase and glucose–fructose isomerization by glucose isomerase. The application of the general model has allowed us to determine the mechanism of the reaction for both kinetic reactions, assuming the adsorption of the enzymatic complex EGa for lactose hydrolysis and the adsorption of the free enzyme onto the membrane for glucose–fructose isomerization.  相似文献   

17.
F. D. Macdonald  J. Preiss 《Planta》1986,167(2):240-245
The cytoplasm was identified as the probable location of pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) in suspension-cultured cells of soybean (Glycine max L.). The characteristics of the partially purified enzyme were investigated. The activity was strongly dependent on the presence of fructose 2,6-bisphosphate and this activator exerted its effects through a dramatic increase in the affinity of the enzyme for its substrates, fructose 6-phosphate and inorganic pyrophosphate. Saturation curves for all substrates were hyperbolic. The apparent molecular weight of the partially purified enzyme was 183000 by gel filtration chromatography and 128000 by sucrose-density-gradient centrifugation. The activation by fructose 2,6-bisphosphate was not accompanied by any measurable change in molecular weight. The possible role of this enzyme in the metabolism of non-photosynthetic sink tissues is discussed.Abbreviations PFP pyrophosphate-fructose-6-phosphate 1-phosphotransferase - Pi phosphate - PPi pyrophosphate  相似文献   

18.
Phosphofructokinase has been identified and purified from extracts of Rhodotorula glutinius. Kinetic studies of the enzyme indicated high cooperativity with respect to fructose 6-phosphate. The kinetics for ATP shows no cooperativity as indicated by the hyperbolic behavior of the enzyme. The enzyme is inhibited by ADP. Citrate and phosphate have no effect on the enzyme activity. The role of ATB, fructose 6-phosphate, and ADP is discussed.  相似文献   

19.
The positive effector 5′-AMP of yeast phosphofructokinase does not influence the binding of fructose 6-phosphate to the enzyme. Cibacron blue F3G-A considered an ATP analogue decreases the affinity of the enzyme to fructose 6-phosphate without exerting an effect on the cooperativity of fructose 6-phosphate binding. The peculiarities of the interactions of AMP and Cibacron blue with fructose 6-phosphate binding demonstrate compatibility of the allosteric kinetics with the binding behavior of the enzyme.  相似文献   

20.
In a reconstituted enzyme system multiple stationary states and oscillatory motions of the substrate cycle catalyzed by phosphofructokinase and fructose 1,6-bisphosphatase are significantly influenced by fructose 2,6-bisphosphate. Depending on the initial conditions, fructose 2,6-bisphosphate was found either to generate or to extinguish oscillatory motions between glycolytic and gluconeogenic states. In general, stable glycolytic modes are favored because of the efficient activation of phosphofructokinase by this effector. The complex effect of fructose 2,6-bisphosphate on the rate of substrate cycling correlates with its synergistic cooperation with AMP in the activation of phosphofructokinase and inhibition of fructose 1,6-bisphosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号