共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation. Phosphorylated EF-2 is unable to catalyze translocation 总被引:2,自引:0,他引:2
Previously we have found that elongation factor 2 (EF-2) from mammalian cells can be phosphorylated by a special Ca2+/calmodulin-dependent protein kinase (EF-2 kinase). Phosphorylation results in complete inactivation of EF-2 in the poly(U)-directed cell-free translation system. However, the partial function of EF-2 affected by phosphorylation remained unknown. Here we show that phosphorylated EF-2, unlike non-phosphorylated EF-2, is unable to switch ribosomes carrying poly(U) and Phe-tRNA in the A site to a puromycin-reactive state. Thus, phosphorylation of EF-2 seems to block its ability to promote a shift of the aminoacyl(peptidyl)-tRNA from the A site to the P site, i.e. translocation itself. 相似文献
2.
3.
Zhang SH Yao JH Song HD Wang L Xue JL 《The International journal of developmental biology》2006,50(4):399-403
We have identified translation elongation factor 2 (EF-2) in zebrafish (GenBank Accession No. AAQ91234). Analysis of the DNA sequence of zebrafish EF-2 shows that the 2826 bp cDNA spans an open reading frame between nucleotide 55 to 2631 and encodes a protein of 858 amino acids. Zebrafish EF-2 protein shares 92%, 93%, 93% and 92% identity with the corresponding amino acid sequence in human, mouse, Chinese hamster and Gallus EF-2, respectively. Whole-mount in situ hybridization showed that zebrafish EF-2 was a developmentally regulated gene and might play important roles during the early development of zebrafish embryos. Therefore, we further studied the function of EF-2 during early embryogenesis. Using morpholino antisense oligo knockdown assays, anti-MO injected embryos were found to display abnormal development. The yolk balls were larger than normal and the melanophores spreading on their bodies became fewer. Furthermore, their tails were incurvate and their lenses were much smaller than those of the normal embryos. However the EF-2 overexpression data showed that extra EF-2 protein had no obvious effect on zebrafish embryonic development. 相似文献
4.
In this study, the thermodynamic activation parameters of cold-adapted proteins from Archaeaa are described for the first time for the irreversible protein unfolding and ribosome-dependent GTPase activity of elongation factor 2 (EF-2) from the psychrotolerant Methanococcoides burtonii and the thermophilic Methanosarcina thermophila. Thermolability of Methanococcoides burtonii EF-2 was demonstrated by a low activation free-energy of unfolding as a result of low activation-enthalpy. Although structural data for EF-2 are presently limited to protein homology modeling, the observed thermodynamic properties are consistent with a low number of noncovvalent bonds or an altered solvent interaction, causing a loss of entropy during the unfolding process. A physiological concentration of potassium aspartate or potassium glutamate was shown to stabilize both proteins against irreversible denaturation by strengthening noncovalent interactions, as indicated by increased activation enthalpies. The transition state of GTPase activity for Methanococcoides burtonii EF-2 was characterized by a lower activation enthalpy than for Methanosarcina thermophila EF-2. The relative entropy changes could be explained by differential displacement of water molecules during catalysis, resulting in similar activation free energies for both proteins. The presence of solutes was shown to facilitate the breaking of enthalpy-driven interactions and structuring of more water molecules during the reaction. By studying the thermodynamic activation parameters of both GTPase activity and unfolding and examining the effects of intracellular solutes and partner proteins (ribosomes), we were able to identify enthalpic and entropic properties that have evolved in the archaeal EF-2 proteins to enable Methanococcoides burtonii and Methanosarcina thermophila to adapt to their respective thermal environments. 相似文献
5.
Peptide elongation factor 3 (EF-3), which is widely present in yeasts and fungi (Eumycota), does not occur in another lower eukaryote, the unicellular protozoan Tetrahymena pyriformis, as was shown by the following findings: (a) there is no activity to satisfy the EF-3 requirement of yeast ribosomes in the post-ribosomal supernatant fraction from Tetrahymena, and (b) the Tetrahymena ribosomes displayed their full capacity for polyphenylalanine synthesis with purified EF-1 alpha and EF-2 alone from either Tetrahymena or yeast, and their activity on the Tetrahymena ribosomes was not further enhanced by the addition of yeast EF-3, in contrast to the case of the yeast ribosomes. However, as a substitute for the ribosome-activated nucleotidase activity of EF-3, Tetrahymena ribosomes were shown to harbor strong, firmly bound ATPase and GTPase activities, which probably involve the same active site. The ribosome-bound ATPase activity was inhibited by a polyclonal antibody raised against yeast EF-3 with the same inactivation profile as that of polyphenylalanine synthesis on Tetrahymena ribosomes, indicating that the ribosomal ATPase plays an essential role in the elongation process on Tetrahymena ribosomes as previously revealed in the yeast system. It was also shown that the ribosomal nucleotidase plays a pivotal role in the elongation cycle in other eukaryotes. 相似文献
6.
Polypeptide elongation factor 2 (EF-2) plays an essential role in protein synthesis and is believed to be indispensable for cell proliferation. Recently, it has been demonstrated that there are two kinds of EF-2 (EF-2A and EF-2B with 76.6% of sequence identity at the amino acid level) in Dictyostelium discoideum. Although the knockout of EF-2A slightly impaired cytokinesis, EF-2A null cells exhibited almost normal protein synthesis and cell growth, suggesting that there is another molecule capable of compensating for EF-2 function. Since EF-2B is the most likely candidate, we examined its function using ef-2b knockdown cells prepared by the RNAi method. Our results strongly suggest that EF-2B is required for protein synthesis and cell proliferation, functioning as the real EF-2. Interestingly, the expressions of ef-2a and ef-2b mRNAs during development are reversely regulated, and the ef-2b expression is greatly augmented in ef-2a null cells. 相似文献
7.
Apis mellifera cytoplasmic elongation factor 1 alpha (EF-1 alpha) is closely related to Drosophila melanogaster EF-1 alpha 总被引:2,自引:0,他引:2
Using low stringency hybridisation with a Drosophila melanogaster EF-1 alpha gene fragment we have isolated a genomic DNA clone encoding elongation factor 1 alpha (EF-1 alpha) from Apis mellifera. The hybridising Apis mellifera sequence could be delineated to two small EcoRI fragments that were also revealed by genomic Southern hybridisation. By comparison with the corresponding Drosophila melanogaster data the complete translational reading frame has been deduced. It is interrupted by two intervening sequences of 220 and about 790 nucleotides. Comparison with known eucaryotic EF-1 alpha sequences further confirms that certain amino acid sequences seem to be invariable within the EF-1 alpha protein family. 相似文献
8.
EF-1a binds aminoacyl-tRNA to the ribosome with the hydrolysis of GTP; the complex facilitates the exchange of GDP for GTP to initiate another round of elongation. To examine the subunit structure of EF-1 and phosphorylation by protein kinase CKII, recombinant , , and subunits from rabbit were expressed in E. coli and the subunits were reconstituted into partial and complete complexes and analyzed by gel filtration. To determine the availability of the and subunits for phosphorylation by CKII, the subunits and the reconstituted complexes were examined as substrates for CKII. Formation of the nucleotide exchange complex increased the rate of phosphorylation of the subunit and reduced the Km, while addition of to or the complex inhibited phosphorylation by CKII. However, a had little effect on phosphorylation of . Thus, the and subunits in EF-1 were differentially phosphorylated by CKII, in that phosphorylation of was altered by association with other subunits, while the site on was always available for phosphorylation by CKII. From the availability of the subunits for phosphorylation by CKII and the composition of the reconstituted partial and complete complexes, a model for the subunit structure of EF-1 consisting of (22)2 is proposed and discussed. 相似文献
9.
The distribution of activity of the elongation factors EF-1 and EF-2 among the components of rabbit reticulocyte lysate separated by sucrose density gradient centrifugation was studied. At low ionic strength (0.01 M KCl) about 30% of the EF-1 activity was found in polyribosomes. At moderate ionic strength (0.1 M KCl) the EF-1 activity was absent in the polyribosomes. An addition of RNA excess to the lysate prior to centrifugation at low ionic strength resulted in elimination of the EF-1 activity from the polyribosomes. This indicates that EF-1 is reversibly bound to the polyribosomes and that EF-1 may be retained on them due to interaction with RNA of polysomes mediated by its RNA-binding site. After dissociation of polyribosomes containing EF-1 in the presence of EDTA and subsequent fractionation of the dissociation products at low ionic strength (0.01 M KCl) the EF-1 activity was revealed in the ribosomal subparticles (predominantly in 60S). At 0.1 M KCl EF-1 mainly sedimented in the zone of distribution of polyribosomal informosomes. The elongation factor EF-2 was not revealed in polyribosomes during lysate centrifugation even at low ionic strength which corresponds to its lower affinity for RNA. 相似文献
10.
Characterization of the ATPase and GTPase activities of elongation factor 3 (EF-3) purified from yeasts 总被引:5,自引:0,他引:5
Three steps of chromatography of a post-ribosomal supernatant fraction have provided a highly purified preparation of peptide elongation factor 3 (EF-3) with a molecular weight of 125,000 from the typical budding yeast Saccharomyces carlsbergensis and of the factor with a molecular weight of 120,000 from the fission yeast Schizosaccharomyces pombe. Both of the proteins consist of a single peptide chain. The purified factors fulfilled the requirement for polyphenylalanine synthesis on yeast ribosomes and exhibited strong ATPase and GTPase activities dependent on yeast ribosomes. The activity profiles of the nucleotidases dependent on pH and salt concentration and the inhibition studies indicated that the ATPase and GTPase activities of EF-3 were displayed by the same active site with a wide substrate specificity, showing the highest activity with ATP. Those experiments also revealed that the ATPase and GTPase of EF-3 were characteristically different from the GTPases of EF-1 alpha and EF-2. Both Km and kcat of EF-3 for ATP (Km = 0.12 mM and Kcat = 610 mol/mol/min) and GTP (Km = 0.20 mM and kcat = 390 mol/mol/min) are much higher than those of the GTPases of EF-1 alpha and EF-2. Inactivation experiments and studies on the ATP effect led us to conclude that this ATPase activity was an essential requirement for the functional role of EF-3 and therefore, in addition to the GTPases of EF-1 alpha and EF-2, the third nucleoside triphosphate hydrolyzing step by the ATPase of EF-3 was necessary for the yeast peptide elongation cycle. 相似文献
11.
Genes coding for the elongation factor EF-1 alpha in Artemia 总被引:8,自引:0,他引:8
J A Lenstra A Van Vliet A C Arnberg F J Van Hemert W M?ller 《European journal of biochemistry》1986,155(3):475-483
12.
Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells 总被引:4,自引:0,他引:4
G Rapp J Klaudiny G Hagendorff M R Luck K H Scheit 《Biological chemistry Hoppe-Seyler》1989,370(10):1071-1075
The use of two primers allowed the specific enzymatic amplification of elongation factor 2 starting with total double-stranded cDNA from human ovarian granulosa cells. The amplified DNA fragment with a length of 1765 bp was restricted and sequenced by the shot gun approach. From the sequences obtained from the amplified fragment and the cDNA insert of pHGR81 [Rapp et al. (1988) Biol. Chem. Hoppe-Seyler 369, 247-250] respectively, the DNA sequence containing the complete coding as well as the 3'-untranslated region was assembled. 相似文献
13.
Localization of the sites of ADP-ribosylation and GTP binding in the eukaryotic elongation factor EF-2 总被引:3,自引:0,他引:3
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus. 相似文献
14.
Neurospora crassa had a heat-stable (up to 95 degrees C), soluble cyclic nucleotide phosphodiesterase (PDE). Both unheated and heat-stable PDE activities were inhibited by micromolar concentrations of Ca2+. This inhibition was reversed by EGTA or EDTA in molar excess of the Ca2+ concentration. Calmodulin was not involved in the Ca2+ inhibition, nor was Ca2+ inhibition of the heat-stable PDE due to cleavage inactivation of the enzyme by a Ca2+-stimulated protease. In addition to Ca2+, several other cations inhibited the activity of the heat-stable enzyme. Cyclic AMP and cGMP, but not 2'3' cAMP were substrates for both unheated and heat-stable PDEs. This is the first report of a PDE which is inhibited by micromolar concentrations of Ca2+. 相似文献
15.
16.
The techniques of homology cloning and anchored PCR were used to clone the elongation factor 2 (EF-2) gene from black tiger shrimp (Penaeus monodon). The full length cDNA of black tiger shrimp EF-2 (btsEF-2) contained a 5' untranslated region (UTR) of 73 bp, an ORF of 2541 bp encoding a polypeptide of 846 amino acids with an estimated molecular mass of 95 kDa, and a 3( UTR of 112 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btsEF-2 was homological to the EF-2 of other species and even the mammalians. The conserved signature sequence of EF-2 gene family, GTPase effector domain and ADP-ribosylation domain were found in the btsEF-2 deduced amino acid sequence. The temporal expressions of gene in the different ovarian stages were measured by real time PCR. The mRNA expressions of the gene were constitutively expressed in ovary and different during the maturation stages. The result indicated that EF-2 gene was constitutively expressed and could play a critical role in the ovarian maturation stage. 相似文献
17.
18.
19.
The ribosomal subunit requirements for GTP hydrolysis by reticulocyte polypeptide elongation factors EF-1 and EF-2 总被引:2,自引:0,他引:2
W McKeehan 《Biochemical and biophysical research communications》1972,48(5):1117-1122
Both the 60S and 40S ribosomal subunits effect the GTPase activity of mammalian elongation factors EF-1 and EF-2. EF-2 promoted hydrolysis is supported by the 60S subunit alone, and is stimulated by the 40S subunit. EF-1 GTPase activity requires both the 60S and 40S ribosomal subunits. 相似文献
20.
Structural and functional studies of the interaction of the eukaryotic elongation factor EF-2 with GTP and ribosomes 总被引:1,自引:0,他引:1
The structure of the guanosine nucleotide binding site of EF-2 was studied by affinity labelling with the GTP analogue, oxidized GTP (oGTP), and by amino acid sequencing of polypeptides generated after partial degradation with trypsin and N-chlorosuccinimide. Native EF-2 contains two exposed trypsin-sensitive cleavage sites. One site is at Arg66 with a second site at Lys571/Lys572. oGTP was covalently bound to the factor between Arg66 and Lys571. After further cleavage of this fragment with the tryptophan-specific cleavage reagent N-chlorosuccinimide, oGTP was found associated with a polypeptide fragment originating from a cleavage at Trp261 and Trp343. The covalent oGTP . EF-2 complex was capable of forming a high-affinity complex with ribosomes, indicating that oGTP, in this respect, induced a conformation in EF-2 indistinguishable from that produced by GTP. Although GTP could be substituted by non-covalently linked oGTP in the factor and ribosome-dependent GTPase reaction, the factor was unable to utilize the covalently bound oGTP as a substrate. This indicates that the conformational flexibility in EF-2 required for the ribosomal activation of the GTPase was inhibited by the covalent attachment of the nucleotide to the factor. EF-2 cleaved at Arg66 were unable to form the high-affinity complex with ribosomes while retaining the ability to form the low-affinity complex and to hydrolyse GTP. The second cleavage at Lys571/Lys572 was accompanied by a total loss of both the low-affinity binding and the GTPase activity. 相似文献