首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
In this study we tried to develop a uniform method of sperm cryopreservation for four cyprinid fish species indigenous to Hungarian waters: the roach (Rutilus rutilus L.), the bream (Abramis brama L.), the silver bream (Blicca bjoerkna L.) and the barbel (Barbus barbus L.). The sperm was frozen in liquid nitrogen vapor in the presence of five extenders (350 mm fructose, 30 mm Tris, pH 8.0; 350 mm glucose, 30 mm Tris, pH 8.0; 300 mm sucrose, 30 mm Tris, pH 8.0; 200 mm KCl, 30 mm Tris, pH 8.0 and modified Kurokura's extender) and two cryoprotectants: 10% methanol (MeOH) and 10% dimethyl‐sulfoxide. The highest post‐thaw motility (roach: 77 ± 6%, bream: 77 ± 6%, silver bream: 67 ± 5%, barbel: 75 ± 6%), fertilization (roach: 84 ± 4%, bream: 83 ± 2%, silver bream: 63 ± 2%, barbel: 70 ± 4%) and hatching (roach: 74 ± 2%, bream: 67 ± 6%, silver bream: 54 ± 2%, barbel: 61 ± 4%) rates were found when either fructose or glucose extenders were used in combination with MeOH as cryoprotectant for all four investigated species. Strong correlations were found between post‐thaw motility of the sperm and fertilization or hatching rates, which indicates that motility can be used to predict fertilization success in these species.  相似文献   

2.
The grouper, Epinephelus lanceolatus, is a vulnerable species of high economic value. An effective protocol was developed for the cryopreservation of E. lanceolatus by comparing different extenders produced by mixing various cryoprotectants (dimethyl sulfoxide, methanol and glycerol) and diluents (MPRS, TS‐2, TS‐19, Cortland and Hank's). Using computer‐assisted sperm analysis (CASA) and morphological analysis, the sperm motility and fertilization rates from post‐thaw sperm were comparable to untreated controls. The results revealed that MPRS (containing 12% DMSO) or TS‐19 (containing 12% DMSO), were the optimum extenders for protecting the sperm from cryo‐damage in liquid nitrogen. The post‐thaw sperm maintained high motility (90.61 ± 3.03%) and a fertilization rate (92.27 ± 2.43%) similar (P > 0.05) to fresh sperm (94.34 ± 4% and 94.10 ± 1.87%). This study is the first to report on the successful sperm cryopreservation of E. lanceolatus and provides an important tool for repopulating this species through aquaculture.  相似文献   

3.
Due to the global decrease in jaguar population, conservation strategies are essential and the development of effective semen cryopreservation protocols would contribute to the formation of germplasm banks. Therefore, the objectives were to (1) evaluate the use of TRIS and ACP-117c extenders for jaguar semen freezing, (2) describe the ultrastructural changes in sperm after cryopreservation, and (3) evaluate the binding capacity of the thawed sperm. Eight ejaculates from five mature individuals were collected by electroejaculation, extended in TRIS or a coconut based-extender (ACP-117c), and frozen in liquid nitrogen. Samples were evaluated for sperm motility, vigor, membrane functionality, mitochondrial activity, morphology (using light microscopy, scanning electron microscopy - SEM and transmission electron microscopy - TEM), sperm kinetic parameters (by computerized analysis - CASA), and sperm binding capability using an egg yolk perivitelline membrane assay. Samples preserved in TRIS presented better post-thaw motility (46.0 ± 7.7%) and membrane functionality (60.5 ± 4.2%) and higher mitochondrial activity (21.5 ± 3.7%) than those preserved in ACP-117c (20.9 ± 5.4% motile sperm; 47.1 ± 2.5% functional membrane; 11.8 ± 1.7% mitochondrial activity). Regarding ultrastructural evaluations, SEM showed that both extenders were able to preserve the superficial membrane of the sperm, but TEM revealed the occurrence of nuclear electron lucent points, especially in samples extended in ACP-117c. Additionally, TRIS also provided a higher number of sperm bound to the perivitelline membrane (29.5 ± 3.3%) in comparison to samples diluted in ACP-117c (18.6 ± 1.5%). Overall, we suggest the use of a TRIS-based extender for cryopreservation of jaguar semen.  相似文献   

4.
Cryopreservation of spermatozoa in cyprinid fishes   总被引:4,自引:0,他引:4  
The present study investigated semen cryopreservation in cyprinid fish using computer-assisted sperm motility analysis for viability control. Spermatozoa of the bleak, Chalcalbumus chalcoides, were used as a basic model to describe the toxic and cryoprotective effects of internal and external cryoprotectants, their most effective concentrations and combinations, the freezing and thawing conditions, and the effects of equilibration. We also used these data to develop a cryopreservation protocol for Barbus barbus, Chondrostoma nasus, Ctenopharyngodon idella, Cyprinus cario, Hypohtalmichthys molitrix, Leuciscus cephalus, Rutilus meidingerii, and Vimba vimba. For all investigated species the optimal extender composition was a buffered physiological sperm motility-inhibiting saline solution containing 10% DMSO and 0.5% glycin. The optimal sperm equilibration period in the extender was < or = 5 min. Freezing was performed in an insulated box in liquid nitrogen vapor and it was optimal at 4 to 5 cm above the surface of the liquid, depending on the species. Thawing was optimal in a 25 degrees C water bath whereby the thawing time ranged depending on species from 15 to 45 sec. This cryopreservation protocol resulted in frozen-thawed semen with 35 to 65% motile and 5 to 25% locally motile spermatozoa depending on the quality of fresh semen.  相似文献   

5.
In this study, total glutathione content was determined in human spermatozoa before and after cryopreservation. Total GSH in fresh semen was 4.47 ± 0.46 nmol/108 cells. Following semen cryopreservation, GSH decreased to 1.62 ± 0.13 nmol/108 cells, a 64% reduction (p < 0.01). This decrease in GSH content was associated with a decrease in sperm progressive motility (68% of reduction, p < 0.01). Addition of 1 mM GSH to the freezing extender increased the percentage of total motility and sperm viability. It also modified the motility pattern measured by CASA with changes in the straight-line and average path velocities and wobble of the curvilinear trajectory. Addition of GSH to the freezing media reduced spermatozoa ROS levels and increased the level of sulfhydryl groups on membrane proteins. Nevertheless, no effect of GSH addition on lipid membrane disorder or chromatin condensation was detected. Addition of 1 or 5 mM GSH to the thawing media increased the percentage of motile and progressively motile spermatozoa, but no effect on viability was detected. In conclusion, the antioxidant defensive capacity of the GSH is severely altered by the freeze–thawing process. The addition of GSH to the freezing and thawing extender could be of partial and limited benefit in improving the function of frozen human spermatozoa.  相似文献   

6.
The aims of the present study were to: (1) determine if discrete motile sperm subpopulations exist and their incidence in fresh dog ejaculates, (2) evaluate the effects of cryopreservation on the distribution of spermatozoa within the different subpopulations, and (3) determine the effect of the discontinuous PureSperm(?) gradient on the sperm subpopulation structure of frozen-thawed dog spermatozoa. Semen from 5 dogs were collected and cryopreserved following a standard protocol. After thawing, semen samples were selected by centrifugation on PureSperm(?). Sperm motility (assessed by computerized-assisted semen analysis, CASA) was assessed before freezing, just after thawing and after preparation on the PureSperm(?) gradients. Cryopreservation had a significant (P<0.001) effect on CASA-derived parameters. PureSperm(?) centrifugation yielded sperm suspensions with improved motility (P<0.01). A multivariate clustering procedure separated 19414 motile spermatozoa into four subpopulations: Subpopulation 1 consisting of poorly active and non-progressive spermatozoa (20.97%), Subpopulation 2 consisting of slow and low-linear spermatozoa (18.24%), Subpopulation 3 consisting of highly active but non-progressive spermatozoa (20.75%), and Subpopulation 4 consisting of high speed and progressive spermatozoa (40.03%). Although, cryopreservation had a significant (P<0.001) effect on both the frequency distribution of spermatozoa within subpopulations and the motion characteristics of each subpopulation, the sperm subpopulation structure was perfectly maintained after freezing and thawing. The selected sperm samples was enrich in Subpopulation 4, reaching a proportion of 31.9% of the present spermatozoa, in contrast with the unselected sperm samples, where this sperm subpopulation accounted for 24.9% of the total. From these results, we concluded that four well-defined motile sperm subpopulations were present either in fresh semen, in unselected sperm samples or in selected preparations from dogs. The discontinuous PureSperm(?) gradient is a simple method to improve the quality of canine frozen-thawed semen samples, since Subpopulation 4 (high-speed and progressive spermatozoa) was more frequently observed after preparation on the gradient. Finally, this study also demonstrated that the general motile sperm structure present in dog remains constant despite the effect caused by either cryopreservation or separation on PureSperm(?) gradient.  相似文献   

7.
Cryopreservation of epididymal spermatozoa is a potentially valuable tool for preserving genetic material from individuals of endangered species that die accidentally. Improvement of sperm-freezing protocols would increase the efficacy of gene banking from endangered felids, and the domestic cat can be used as a model for the wild felids. Addition of the detergent Equex STM paste to semen freezing extenders has been found to improve post-thaw survival and longevity of spermatozoa from various species but has never been tested for cat spermatozoa. Spermatozoa from cats with a high percentage of morphologically abnormal spermatozoa are more susceptible for cold injury and osmotic stress than spermatozoa from normozoospermic cats. Therefore, the aims of this study were to investigate: (a) if addition of Equex STM paste to a semen freezing extender would improve post-thaw sperm survival, and (b) if there is a relation between the percentage of morphologically normal spermatozoa and cryopreservation induced damage in cat epididymal spermatozoa. Spermatozoa harvested from epididymides of 10 male cats were frozen in a Tris egg yolk extender with or without the addition of Equex STM paste (0.5%, v/v). Sperm motility, membrane integrity and acrosomal status were evaluated immediately after harvesting, and at 0, 2, 4 and 6 h post-thaw. Sperm membrane integrity and acrosomal status were also evaluated after cooling to 4 degrees C, just before freezing. Cooling did not cause significant damage to the spermatozoa, whereas freezing damaged sperm membranes and acrosomes. Addition of Equex to the freezing extender had a significant positive effect on the percentage of intact acrosomes immediately after thawing (P > 0.05), but had a negative effect on the longevity of the spermatozoa; the percentages of membrane intact and motile spermatozoa being significantly lower in the presence of Equex than in the controls at 6h after thawing. The percentage of morphologically normal spermatozoa was not found to be correlated with either cryopreservation induced acrosome or plasma membrane damage, or with post-thaw motility (P > 0.05). The results clearly show that addition of Equex STM paste in the freezing extender protects the acrosomes of cat epididymal spermatozoa during the freezing--thawing process, but reduces the sperm longevity during in vitro incubation at 38 degrees C. Our results also indicate that the percentage of morphologically normal epididymal spermatozoa is not correlated with cryopreservation induced sperm damage using the described freezing protocol.  相似文献   

8.
A cooperative method was developed for collecting semen from a Magellanic penguin. Ejaculate parameters and semen production during a breeding season were characterized. Experiments were performed to study the effect on penguin spermatozoa of two temperatures (4°C and 21°C) for short‐term storage, and two cryoprotectants (dimethylsulfoxide [DMSO] and ethylene glycol [EG]) for long‐term storage (cryopreservation). All dilutions were made using modified Beltsville Poultry Semen Extender. Sperm quality was assessed by evaluating motility and forward progression (sperm motility index [SMI]), viability, and morphology. A total of 39 ejaculates was collected over the 40‐day study period. Thirty‐eight ejaculates contained spermatozoa, but semen quality decreased toward the end of the study period. Varying levels of urate contamination were present in all ejaculates. Sperm quality parameters were similar for diluted samples held at 4°C and 21°C, and samples maintained high numbers of viable (77.8 ± 5.4%) and morphologically normal (67.9 ± 2.5%) spermatozoa at 3 hr. SMI and percentage of viable sperm decreased (P < 0.05) and the number of spermatozoa with a bent head or midpiece increased (P < 0.05) for both temperature groups over the 3‐hr storage interval. DMSO and EG were equally effective in maintaining penguin sperm quality parameters during the cryopreservation and thawing process. Frozen‐thawed semen maintained 69 ± 5 and 78 ± 3% of its pre‐freeze SMI and viability, respectively. SMI and viability decreased slightly during the cooling and equilibration phases but remained relatively stable during the 3‐hr storage interval post‐thaw. Frozen‐thawed semen also exhibited an increase (P < 0.05) in spermatozoa with a bent head or midpiece over time. The pre‐freeze SMI was higher (P < 0.05) for ejaculates with low levels of urates (clean ejaculates) compared with ejaculates with high levels of urate contamination, but sperm viability and morphology were similar (P > 0.05). Both SMI and viability of frozen‐thawed spermatozoa were higher (P < 0.05) for clean than for contaminated ejaculates. This is the first report on penguin ejaculate parameters, semen production, and preliminary methods for short‐ and long‐term semen storage. Zoo Biol 18:199–214, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Preservation of the genetic diversity of the captive orangutan, especially the wild-caught founders, is critical in maintaining a long-term population in zoological parks. One solution to the problem of maintaining maximum genetic diversity would be to initiate a program of artificial insemination for genetically underrepresented individuals through the banking and interinstitutional use of cryopreserved semen. However, little is known about basic orangutan semen characteristics, and current methodology is inadequate to support such a program. In this paper, we report the results of semen collection from an adult Sumatran orangutan (Pongo pygmaeus abelli), using an artificial vagina without anesthesia or electrical stimulation. A total of 27 ejaculates were evaluated during a 1-year period. The total and liquid volumes of the ejaculates at 1 h following collection were 6.1 ± 0.6 ml and 2.6 ± 0.4 ml, respectively (mean ± SEM). The liquid portion continued to exude semen for 2 h; however, 90% of the motile sperm was exuded within the first 30 min. The total number of sperm in the ejaculate was 164 ± 106 ± 16.5, and the percentage of motile cells was 60 ± 2.7%. We conclude that the artificial vagina provides a promising technique for semen collection in the orangutan, and view these results as an initial step in developing methods for in vitro sperm capacitation, sperm cryopreservation, and artificial insemination. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Lipid peroxidation (LPO) of dog spermatozoa was assessed in fresh semen and in samples of the same ejaculates after freezing and thawing. Particular attention was paid to individual differences in the susceptibility to LPO and its possible relationship with freezeability. Innate levels of LPO were low in fresh spermatozoa but increased after thawing in one of the dogs included in our study. The level of lipid peroxidation in fresh spermatozoa was not correlated with that of thawed spermatozoa. Negative correlations were detected between the activity in seminal plasma of GPx and sperm velocities post thaw (P < 0.01), however SOD activity was positively correlated with the percentage of linear motile sperm post thaw (P < 0.05).  相似文献   

11.
精子冷冻是辅助生殖技术的基础,能够有效的保存有价值的基因资源。文章回顾了近些年来国内外精子冷冻保存的重要研究成果,分析了精子的来源、冷冻预处理、冷冻和解冻方法、防冻剂的选择及其加入去除方式的选择等因素对精子冷冻效果的影响。文章还总结了精子冷冻效果的评价方法,展望精子冷冻技术的发展方向和应用前景。  相似文献   

12.
Gadea J  Sellés E  Marco MA  Coy P  Matás C  Romar R  Ruiz S 《Theriogenology》2004,62(3-4):690-701
Although glutathione content in boar spermatozoa has been previously reported, the effect of reduced glutathione (GSH) on semen parameters and the fertilizing ability of boar spermatozoa after cryopreservation has never been evaluated. In this study, GSH content was determined in ejaculated boar spermatozoa before and after cryopreservation. Semen samples were centrifuged and GSH content in the resulting pellet monitored spectrophotometrically. The fertilizing ability of frozen-thawed boar sperm was also tested in vitro by incubating sperm with in vitro matured oocytes obtained from gilts. GSH content in fresh semen was 3.84 +/- 0.21 nM GSH/10(8) sperm. Following semen cryopreservation, there was a 32% decrease in GSH content (P < 0.0001). There were significant differences in sperm GSH content between different boars and after various preservation protocols (P = 0.0102 ). The effect of addition of GSH to the freezing and thawing extenders was also evaluated. Addition of 5 mM GSH to the freezing extender did not have a significant effect on standard semen parameters or sperm fertilizing ability after thawing. In contrast, when GSH was added to the thawing extender, a dose-dependent tendency to increase in sperm fertilizing ability was observed, although no differences were observed in standard semen parameters. In summary, (i) there was a loss in GSH content after cryopreservation of boar semen; (ii) addition of GSH to the freezing extender did not result in any improvement in either standard semen parameters or sperm fertilizing ability; and (iii) addition of GSH to the thawing extender resulted in a significant increase in sperm fertilizing ability. Nevertheless, future studies must conclude if this is the case for all boars. Furthermore, since addition of GSH to the thawing extender did not result in an improvement in standard semen parameters, this suggests that during the thawing process, GSH prevents damage of a sperm property that is critical in the fertilization process but that is not measured in the routine semen analysis.  相似文献   

13.
In addition to the existence of several cryopreservation protocols, no systematic research has been carried out in order to confirm the suitable protocol for canine sperm. This study aims to assess the effect of adding 5% glycerol during cryopreservation at 37°C (one-step) and 5°C (two-steps), in addition of testing two thawing protocols (37°C for 30 seconds, and 70°C for 8 seconds). We used 12 sperm samples divided into four experimental groups: Single-Step - Slow Thawing Group; Two-Step - Slow Thawing Group; Single-Step - Fast Thawing Group; and Two-Step - Fast Thawing Group. Frozen-thawed samples were submitted to automated analysis of sperm motility, evaluation of plasmatic membrane integrity, acrosomal integrity, mitochondrial activity, sperm morphology, sperm susceptibility to oxidative stress, and sperm binding assay to perivitellinic membrane of chicken egg yolk. Considering the comparison between freezing protocols, no statistical differences were verified for any of the response variables. When comparison between thawing protocols was performed, slow thawing protocol presented higher sperm count bound to perivitelline membrane of chicken egg yolk, compared to fast thawing protocol. Regardless of the freezing process, the slow thawing protocol can be recommended for the large scale cryopreservation of canine semen, since it shows a consistent better functional result.  相似文献   

14.
The study compared quality and freezability of stallion semen during breeding and non-breeding seasons. Ejaculates were collected twice per week from four stallions during May (n = 24) and December (n = 24). The semen was mixed with skim milk extender, centrifuged and resuspended in fresh extender. Aliquots of this sperm suspension were separated from extender and diluted in TALP medium for sperm evaluation or with cryoextender (type "Gent" or a combination of Triladyl and skim milk). Samples of 0.5ml were cryopreserved in straws using a programmed freezer. Parameters of sperm quality were evaluated before and after freezing/thawing. These included percentages of motile spermatozoa and of morphological intact sperm. Typical injuries were demonstrated by scanning electron microscopy (S.E.M.). The acrosomal status was visualised using FITC-conjugated peanut agglutinin, and the acrosome reaction was induced by calcium ionophore A 23187. The chromatin stability was estimated by acridine orange test.In winter, the average percentages of motile and morphologically normal sperm (67 and 74.3%, respectively) were higher than during the breeding season in May (59 and 65.9%; P < 0.05). After freezing/thawing the proportions of vital and intact sperm decreased significantly. The number of motile sperm declined to 15 and 18% in May and December (range 5-40%), and of morphologically intact sperm to 51% in both seasons. Results of S.E.M. showed typical membrane ruptures in the acrosomal region and some sperm with abnormal necks. The proportion of frozen sperm with spontaneous acrosome reaction was higher during winter (86.5 versus 77.0%), suggesting a higher degree of membrane reactivity. Percentages of spermatozoa with denaturated chromatin were minimal and showed minimal differences between fresh and frozen state, stallions or seasons. An additional decondensation treatment with papain and DTE revealed a slightly enhanced number of spermatozoa with denaturable DNA after cryopreservation, especially in December (5.4 +/- 1.3%). The influence of cryoextenders was not significant for most sperm parameters, but there was a high variability between the stallions. Altogether, the influence of factors on the quality of spermatozoa has the following rank order: cryopreservation > stallion > season. Different cellular structures seem to have different susceptibilities to physicochemical stress. The cryopreservation of sperm during December results in survival rates similar to those measured during the breeding season, even more important for successful preservation is the selection of suitable semen donors.  相似文献   

15.
New aspects of boar semen freezing strategies   总被引:1,自引:0,他引:1  
Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred. There is ongoing research to improve sperm survival after thawing, to limit the damage occurring to spermatozoa during freezing, and to further minimize the number of spermatozoa needed to establish a pregnancy. Boar spermatozoa are exposed to lipid peroxidation during freezing and thawing, which causes damage to the sperm membranes and impairs energy metabolism. The addition of antioxidants or chelating agents (e.g. catalase, vitamin E, glutathione, butylated hydroxytoluene or superoxide dismutase) to the still standard egg-yolk based cooling and freezing media for boar semen, effectively prevented this damage. In general, final glycerol concentrations of 2-3% in the freezing media, cooling rates of -30 to -50 degrees C/min, and thawing rates of 1200-1800 degrees C/min resulted in the best sperm survival. However, cooling and thawing rates individually optimized for sub-standard freezing boars have substantially improved their sperm quality after cryopreservation. With deep intrauterine insemination, the sperm dose has been decreased from 6 to 1x10(9) spermatozoa without compromising farrowing rate or litter size. Minimizing insemination-to-ovulation intervals, based either on estimated or determined ovulation, have also improved the fertility after AI with cryopreserved boar semen. With this combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved, facilitating the use of cryopreserved boar semen in routine AI programs.  相似文献   

16.
As part of a larger study on sperm quality and cryopreservation methods, the present study characterized the head morphometry of sharpsnout sea bream (Diplodus puntazzo) and gilthead sea bream (Sparus aurata) spermatozoa, using both scanning electron microscopy (SEM) and computer‐assisted morphology analysis (ASMA). The latter method has been used rarely in fish and this is its first application on sharpsnout sea bream and gilthead sea bream spermatozoa. Results obtained using SEM are expensive and time‐consuming, while ASMA provides a faster and automated evaluation of morphometric parameters of spermatozoa head. For sharpsnout sea bream spermatozoa, similar head measurement values were obtained using both ASMA and SEM, having a mean ± standard error length of 2.57 ± 0.01 μm vs 2.54 ± 0.02 μm, width of 2.22 ± 0.02 μm vs 2.26 ± 0.04 μm, surface area of 4.44 ± 0.02 μm2 vs 4.50 ± 0.04 μm2 and perimeter of 7.70 ± 0.02 μm vs 7.73 ± 0.04 μm using ASMA and SEM, respectively. Although gilthead sea bream spermatozoa were found to be smaller than those of sharpsnout sea bream, spermatozoal head morphometry parameters were also found to be similar regardless of evaluation method, having a mean head length of 1.97 ± 0.01 μm vs 1.94 ± 0.02 μm, head width of 1.80 ± 0.01 μm vs 1.78 ± 0.02 μm, surface area of 3.16 ± 0.03 μm2 vs 3.18 ± 0.06 μm2 and perimeter of 6.52 ± 0.04 μm vs 6.56 ± 0.08 μm using ASMA and SEM, respectively. The results demonstrate that ASMA can be considered as a reliable technique for spermatozoal morphology analysis, and can be a useful tool for studies on fish spermatozoa, providing quick and objective results.  相似文献   

17.
Ritar AJ  Campet M 《Theriogenology》2000,54(3):467-480
Methods of short-term storage and cryopreservation were examined for semen from striped trumpeter (Latris lineata). For fresh semen at 18 degrees C, the percentage of motile sperm declined rapidly from over 80% immediately after activation with sea water to less than 2% within 9 min after activation. The motility after activation of undiluted fresh sperm stored at 5 degrees C was maintained for two days and then declined markedly so that by the eighth day, sperm were mostly immotile after activation. The post-thawing motility was higher for sperm frozen with a non-activating diluent containing 2.84 M DMSO in saline (117 mM NaCl) than in an activating glycerol (2 M) medium in dilute sea water (300 mOsm). Post-thawing motility was higher for a dilution rate of 1:5 (semen:diluent) than 1:2 or 1:11 but was similar when frozen semen was thawed at 10 degrees, 20 degrees or 30 degrees C. For semen stored at a range of volumes as pellets frozen on dry ice (0.2 to 2.0 mL) or straws frozen in liquid nitrogen vapor (0.25 to 0.5 mL) and thawed in a waterbath at 20 degrees C, the post-thawing motilities were similar even though the patterns of cooling and thawing differed markedly between methods of freezing and sizes of pellets and straws.  相似文献   

18.
In order to improve the genetic management of bird species within the European Endangered Programs (EEP), a research project on artificial insemination and cryopreservation of Galliformes semen has been developed. The aim of the program is to create a sperm cryobank for threatened bird species. During this study, semen was collected from 17 pheasant species and specific characteristics of ejaculates were analyzed (volume, sperm concentration, motility, pH). Artificial insemination with fresh semen was performed in nine species and with frozen semen in eight species. Inseminations with frozen and thawed semen were made in 17 species. Viability of fresh and frozen semen was assessed in vitro using double stains, eosin and nigrosin. The effect of pH (7-8.5) on viability of fresh and frozen/thawed spermatozoa was also studied. Chicks hatched in eight and three species after insemination with fresh and frozen/thawed semen, respectively. Species varied widely in semen viability: 1-30% of spermatozoa survived freezing and thawing. There was a negative correlation between the viability of frozen spermatozoa and semen pH. In our experimental conditions, the pH of diluents had no effect on semen viability. However, semen with the highest pH had the lowest quality after freezing and thawing. These experiments demonstrated the feasibility of using a very simple and inexpensive method to achieve artificial insemination and cryopreservation of semen in endangered pheasant species.  相似文献   

19.
In the present study, the impact of non-functional spermatozoa on the cryopreservation success of functional boar spermatozoa was evaluated. Fifteen sperm-rich ejaculate fractions collected from five fertile boars were frozen with different proportions of induced non-functional sperm (0--native semen sample-, 25, 50 and 75% non-functional spermatozoa). After thawing, the recovery of motile and viable spermatozoa was assessed, and the functional of the spermatozoa was evaluated from plasma membrane fluidity and intracellular reactive oxygen species (ROS) generation upon exposure to capacitation conditions. In addition, the lipid peroxidation of the plasma membrane was assessed by the indirect measurement of malondialdehyde (MDA) generation. The normalized (with respect to a native semen sample) sperm motility (assessed by CASA) and viability (cytometrically assessed after staining with Hoechst 33342, propidium iodide and fluorescein-conjugated peanut agglutinin) decreased (p<0.01) as the proportion of functional spermatozoa in the semen samples before freezing decreased, irrespective of the semen donor. However, the magnitude of the effect differed (p<0.01) among boars. Moreover, semen samples with the largest non-functional sperm subpopulation before freezing showed the highest (p<0.01) levels of MDA after thawing. The thawed viable spermatozoa of semen samples with a high proportion of non-functional spermatozoa before freezing were also functionally different from those of samples with a low proportion of non-functional spermatozoa. These differences consisted of higher (p<0.01) levels of intracellular ROS generation (assessed with 5-(and-6) chloromethyl-20,70-dichlorodihydrofluorescein diacetate acetyl ester; CM-H(2)DCFDA) and increased (p<0.01) membrane fluidity (assessed with Merocyanine 540). These findings indicate that non-functional spermatozoa in the semen samples before freezing negatively influence the freezability of functional spermatozoa.  相似文献   

20.
The effect of thawing velocities ranging from 10°C/min to 1.800°C/min on the motility and acrosomal integrity of boar spermatozoa frozen at 1°C/min (suboptimal), 5°C/min, and 30°C/min (optimal) rate was studied with the sperm suspended for freezing in diluent containing 2, 4, or 6% of glycerol (v/v). The influence of thawing on sperm survival depends on the rate at which the sperm had been frozen. In semen frozen at a suboptimal rate of 1°C/min, the percentage of motile sperm (FMP) initially fell to 3.5–4.0% when the thawing rose to 200°C/ min, but, with further increases in thawing rate, increased and reached peak values (10.3–11.0% FMP) after thawing at 1,800°C/min. The percentage of sperm with normal apical ridge (NAR) also increased moderately with thawing rate, but the degree of improvement decreased as the glycerol level was increased. In semen frozen at 1°C/min, acrosomal integrity (NAR) was best maintained in 2% glycerol, reaching 22.9% NAR after thawing at 1,800°C/min. In semen frozen at the optimal rate of 30°C/min, the increases in thawing rates above 200°C/min substantially improved motility. Motility was generally higher in semen protected by 4 or 6% glycerol, with the peak values of 44 or 46% FMP, respectively, after thawing at 1,200°C/min. The proportion of sperm with NAR also increased with thawing rate, but as in the case of suboptimally frozen sperm it was influenced negatively by the glycerol concentration. The peak value 53% NAR was recorded in semen protected by 2% glycerol, frozen at 30°C/min, and thawed at 1,200°C/min. In view of the inverse relationship between FMP and NAR, selection of optimal conditions from among the interacting variables, freezing rate, glycerol concentration, and thawing rate requires compromising between maximal FMP and maximal NAR. Accordingly, we have adopted as optimal a protocol with a thawing rate of 1,200°C/min, a freezing rate of 30°C/min and concentrations of 3% glycerol. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号