首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of the Mating Type Gene in Agaricus bisporus   总被引:4,自引:1,他引:3       下载免费PDF全文
The cultivated mushroom Agaricus bisporus is secondarily homothallic. Most basidia produce two basidiospores, each of which receives two of the four postmeiotic nuclei. Usually, the two packaged nuclei carry compatible mating types. Previous studies suggested that there may be only a single mating type locus in A. bisporus. In this study, we determined whether the mating type segregated as a single Mendelian determinant in a cross marked with 64 segregating molecular markers. To score mating types, each of the 52 homokaryotic offspring from this cross was paired with each of the two progenitor homokaryons. Compatible matings were identified by the formation of genetically stable heterokaryons which were verified by assay of restriction fragment length polymorphisms (RFLPs). Data for screening mycelial interactions on petri plates as well as fruit body formation were compared with the RFLP results. Mating types of 43 of the 52 homokaryotic offspring were determined on the basis of RFLP analysis. Our results indicate (i) there is a segregating mating type gene in A. bisporus, (ii) this mating type gene is on the largest linkage group (chromosome I), (iii) mycelial interactions on petri plates were associated with heterokaryon formation under selected conditions, (iv) fruit body formation was dependent upon the mating type gene, and (v) compatible mating types may not always be sufficient for fruiting.  相似文献   

2.
The degree to which, and rapidity with which, inbreeding depression can be purged from a population has important implications for conservation biology, captive breeding practices, and invasive species biology. The degree and rate of purging also informs us regarding the genetic mechanisms underlying inbreeding depression. We examine the evolution of mean survival and inbreeding depression in survival following serial inbreeding in a seed-feeding beetle, Stator limbatus, which shows substantial inbreeding depression at all stages of development. We created two replicate serially inbred populations perpetuated by full-sib matings and paired with outbred controls. The genetic load for the probability that an egg produces an adult was purged at approximately 0.45-0.50 lethal equivalents/generation, a reduction of more than half after only three generations of sib-mating. After serial inbreeding we outcrossed all beetles then measured (1) larval survival of outcrossed beetles and (2) inbreeding depression. Survival of outcrossed beetles evolved to be higher in the serially inbred populations for all periods of development. Inbreeding depression and the genetic load were significantly lower in the serially inbred than control populations. Inbreeding depression affecting larval survival of S. limbatus is largely due to recessive deleterious alleles of large effect that can be rapidly purged from a population by serial sib-mating. However, the effectiveness of purging varied among the periods of egg/larval survival and likely varies among other unstudied fitness components. This study presents novel results showing rapid and extensive purging of the genetic load, specifically a reduction of as much as 72% in only three generations of sib-mating. However, the high rate of extinction of inbred lines, despite the lines being reared in a benign laboratory environment, indicates that intentional purging of the genetic load of captive endangered species will not be practical due to high rates of subpopulation extinction.  相似文献   

3.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

4.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.  相似文献   

5.
Mycelial enzyme extracts of Schizophyllum commune were prepared during vegetative growth matings leading to common-A and common-B heterokaryons and the dikaryon, and were examined for hydrolytic activity against an alkaliinsoluble cell-wall glucan (R-glucan) isolated from this mushroom. In extracts from several individual homokaryotic mycelia the R-glucanase activity was low and did not increase when the cultures exhausted glucose in the medium. In common-A matings, a 30-fold increase in specific activity of intracellular R-glucanase was found even in the presence of glucose in the broth. An increase of this magnitude was not observed in the common-B mating nor in the fully compatible cross leading to the dikaryon. Extracts of the dikaryon did show elevated R-glucanase activity after exogenous glucose disappearance and subsequent fruiting. In none of these situations was an enzyme activity detected towards an alkali-soluble cell-wall glucan (S-glucan) prepared from S. commune. Changes in R-glucanase were not parallelled by identical changes in laminarinase, pustulanase, cellobiase, and p-nitrophenyl-beta-d-glucosidase, but comparable increases in specific activities were found for hydrolysis of glycogen and maltose. After interaction of the various mycelia in mating combinations, the S-glucan/R-glucan ratio of the cell wall of the dikaryon was found to be similar to that of the homokaryons, but increased in the common-B interaction and was elevated almost threefold in the common-A heterokaryon.  相似文献   

6.
In monoecious plants, gametes can be exchanged in three ways: among unrelated genets (outbreeding), with close relatives (inbreeding), or within individuals (geitonogamous selfing). These different mating systems may have consequences for population demography and fitness. The experiment presented herein used artificial crosses to examine the mating system of Chesapeake Bay, Virginia, USA eelgrass (Zostera marina L; Zosteraceae), a bisexual submerged aquatic plant that can outbreed, inbreed, and self. Genetic data indicate severe heterozygosity deficiencies and patchy genotype distribution in these beds, suggesting that plants therein reproduce primarily by vegetative propagation, autogamy, or geitonogamy. To clarify eelgrass reproductive strategies, flowers from three genetically and geographically distinct beds were hand-pollinated in outbred, inbred, and selfed matings. Fertilization success and seed production, life history stages which contribute greatly to the numeric maintenance of populations, were monitored. We found no evidence that inbreeding had negative consequences for seed production. On the contrary, selfed matings produced seeds significantly more frequently than outcrossed matings and produced significantly larger numbers of seeds than either inbred or outbred matings. These results contrast with patterns for eelgrass in other regions but might be expected for similar populations in which pollen limitation or a short reproductive season renders selfing advantageous.  相似文献   

7.
A uniparental mitochondrial (mt) transmission pattern has been previously observed in laboratory matings of the cultivated mushroom Agaricus bisporus on petri dishes. In this study, four sets of specific matings were further examined by taking mycelial plugs from the confluent zone of mated homokaryons and inoculating these plugs into rye grain for laboratory fruiting and for fruiting under industrial conditions. Examination of the mt genotype of each individual fruit body for mt-specific restriction fragment length polymorphisms further confirmed that the mt genome was inherited uniparentally. The vegetative radial growth and the fruiting activity of two pairs of intraspecific heterokaryons, each pair carrying the same combination of nuclear genomes but different mt genotypes, were compared. Our results suggested that the mt genotype did not appreciably affect radial growth or fruiting activity. The failure to recover both heterokaryons, each carrying either parental mt genotype in any given cross, therefore clearly indicated that in matings of A. bisporus, the mt genome from one of the parental homokaryons is either selectively excluded in the newly formed heterokaryon or selectively eliminated in the immediate heterokaryotic mitotic progeny of the newly formed heterokaryon.  相似文献   

8.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

9.
If microgeographic variation in selection within a natural plant population has resulted in local adaptation, then offspring fitness should decline with distance from the parental site. If outcrossed progeny are less well-adapted to the parental environment than inbred progeny, but perform better in environments different from that of the parent, then the fitness of inbred progeny relative to outcrossed progeny should decrease with dispersal distance from the parent. To test these predictions, we collected seedlings at 10-m intervals from a 40 times 40-m permanent grid in a natural population of Impatiens capensis, grew them in a greenhouse, and crossed them to produce outcrossed chasmogamous seeds. Seedlings from outcrossed chasmogamous and self-fertilized cleistogamous seeds were planted back into the source population in the original site of their maternal parents and in arcs 3 and 12 m from the parental location and censused weekly for survival and reproduction. The fitness of inbred offspring declined significantly and the magnitude of observed inbreeding depression increased with distance from the parental site, supporting the local adaptation hypothesis.  相似文献   

10.
Inbreeding resulting from the mating of two related individuals can reduce the fitness of their progeny. However, quantifying inbreeding depression in wild populations is challenging, requiring large sample sizes, detailed knowledge of life histories and study over many generations. Here we report analyses of the effects of close inbreeding, based on observations of mating between relatives, in a large, free-living noninsular great tit (Parus major) population monitored over 41 years. Although mating between close relatives (f > or = 0.125) was rare (1.0-2.6% of matings, depending on data set restrictiveness), we found pronounced inbreeding depression, which translated into reduced hatching success, fledging success, recruitment to the breeding population and production of grand offspring. An inbred mating at f = 0.25 had a 39% reduction in fitness relative to that of an outbred nest, when calculated in terms of recruitment success, and a 55% reduction in the number of fledged grand offspring. Our data show that inbreeding depression acts independently at each life-history stage in this population, and hence suggest that estimates of the fitness costs of inbreeding must focus on the entire life cycle.  相似文献   

11.
The effect of inbreeding on genetic diversity is expected to decrease plant defences or vigour-related traits that, in turn, can modify the pattern of attack by herbivores. The selective damage caused by herbivores can produce variable fitness costs between inbred and outcrossed progenies influencing the evolution of a species’ plant mating system. By exposing inbred and outcrossed plants to natural conditions of seed predation, we assessed whether inbreeding increases weevil incidence and infestation, and how weevil seed predation affects the fitness of inbred and outcrossed progeny. To test if inbreeding affected the host’s plant quality, we weighed the biomass of weevils developed in inbred and outcrossed progenies. An additional experiment was carried out to examine whether weevils preferentially attack vigorous plants regardless from the level of inbreeding. The average value of leaf size was 21% larger in outcrossed plants than in inbred plants. Likewise, weevil incidence and infestation were 13 and 40%, respectively, higher on outcrossed plants relative to their inbred counterparts. However, the relative impact of seed predation was significantly lower in outcrossed progeny than in inbred progeny. In contrast, inbreeding did not alter host plant quality and weevils developed in inbred and outcrossed plants had a similar biomass. Variations in fruit number were consistently associated with the infestation level in both experiments, whereas leaf size only predicted the number of weevils in one experiment, suggesting that fruit number is the most influential vigour-related characteristic of a weevil attack. These findings indicate that the costs of inbreeding of the interaction D. stramonium-T. soror were higher for inbred plants than for outcrossed plants. The interaction between seed predation and inbreeding depression could prevent the fixation of selfing as a unique reproductive strategy in D. stramonium.  相似文献   

12.
Accurate estimates of inbreeding depression are necessary in order to predict the evolutionary dynamics of a population, but many studies estimate inbreeding depression based solely on components of female function such as fruit set, seed set, and seed quality. Because total fitness is achieved through both male and female functions in hermaphroditic plants, estimates of both male and female fitness are needed to estimate accurately the magnitude of inbreeding depression. Seedlings of a wild gourd, Cucurbita pepo subsp. texana, with coefficients of inbreeding of 0 and 0.75 were planted in an experimental garden, and several components of male and female fitness were measured over the course of the growing season. Fitness in inbred plants was confounded by both maternal and genetic inbreeding effects. Inbred individuals produced significantly fewer fruits than outcrossed individuals, and percentage germination of seeds from inbred individuals was significantly lower than seeds from outcrossed individuals. Inbred plants also produced significantly fewer staminate flowers and marginally fewer and smaller pollen grains per flower. Pollen from inbred plants also grew significantly more slowly in vitro than pollen from outcrossed plants. Multiplicative estimates of inbreeding depression revealed inbreeding depression for both male and female functions in wild gourd, but inbreeding depression through female function was stronger than inbreeding depression through male function.  相似文献   

13.
Many species suffer from anthropogenic habitat fragmentation. The resulting small and isolated populations are more prone to extinction due to, amongst others, genetic erosion, inbreeding depression and Allee-effects. Genetic rescue can help mitigate such problems, but might result in outbreeding depression. We evaluated offspring fitness after selfing and outcrossing within and among three very small and isolated remnant populations of the heterostylous plant Primula vulgaris. We used greenhouse-grown offspring from these populations to test several fitness components. One population was fixed for the pin-morph, and was outcrossed with another population in the field to obtain seeds. Genetic diversity of parent and offspring populations was studied using microsatellites. Morph and population-specific heterosis, inbreeding and outbreeding depression were observed for fruit and seed set, seed weight and cumulative fitness. Highest fitness was observed in the field-outcrossed F1-population, which also showed outbreeding depression following subsequent between-population (back)crossing. Despite outbreeding depression, fitness was still relatively high. Inbreeding coefficients indicated that the offspring were more inbred than their parent populations. Offspring heterozygosity and inbreeding coefficients correlated with observed fitness. One population is evolving homostyly, showing a thrum morph with an elongated style and high autonomous fruit and seed set. This has important implications for conservation strategies such as genetic rescue, as the mating system will be altered by the introduction of homostyles.  相似文献   

14.
Harmful effects arising from matings between relatives (inbreeding) is a long‐standing observation that is well founded in theory. Empirical evidence for inbreeding depression in natural populations is however rare because of the challenges of assembling pedigrees supplemented with fitness traits. We examined the occurrence of inbreeding and subsequent inbreeding depression using a unique data set containing a genetically verified pedigree with individual fitness traits for a critically endangered arctic fox (Vulpes lagopus) population. The study covered nine years and was comprised of 33 litters with a total of 205 individuals. We recorded that the present population was founded by only five individuals. Over the study period, the population exhibited a tenfold increase in average inbreeding coefficient with a final level corresponding to half‐sib matings. Inbreeding mainly occurred between cousins, but we also observed two cases of full‐sib matings. The pedigree data demonstrated clear evidence of inbreeding depression on traditional fitness traits where inbred individuals displayed reduced survival and reproduction. Fitness traits were however differently affected by the fluctuating resource abundande. Inbred individuals born at low‐quality years displayed reduced first‐year survival, while inbred individuals born at high‐quality years were less likely to reproduce. The documentation of inbreeding depression in fundamental fitness traits suggests that inbreeding depression can limit population recovery. Introducing new genetic material to promote a genetic rescue effect may thus be necessary for population long‐term persistence.  相似文献   

15.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

16.
The relevance of inbreeding depression to the persistence of plant populations can depend upon whether stress magnifies inbreeding depression for fitness-related traits. To examine whether drought stress exacerbates inbreeding depression in gas exchange traits and biomass, we grew selfed and outcrossed progeny of inbred lines from two populations of Impatiens capensis in a greenhouse experiment under water-limited and moist soil conditions. Drought stress did not magnify the degree of inbreeding depression for any of the traits measured. In fact, in one population there was a trend for stronger inbreeding depression under well-watered, benign conditions. Furthermore, significant inbreeding depression for carbon assimilation rate and stomatal conductance was only detected in the lines from one population. In contrast, inbreeding depression for biomass was detected within both populations and differed among lines. Drought stress exerted significant selection on physiological traits, favoring increased carbon assimilation rates and decreased stomatal conductance in drought-stressed plants. Patterns of selection did not differ between inbred and outcrossed plants but did differ marginally between populations. Thus, estimates of selection were not biased by the mixed mating system per se, but may be biased by combining individuals from populations with different histories of selection and inbreeding.  相似文献   

17.
The magnitude of inbreeding depression is often larger in traits closely related to fitness, such as survival and fecundity, compared to morphological traits. Reproductive behaviour is also closely associated with fitness, and therefore expected to show strong inbreeding depression. Despite this, little is known about how reproductive behaviour is affected by inbreeding. Here we show that one generation of full‐sib mating results in a decrease in male reproductive performance in the least killifish (Heterandria formosa). Inbred males performed less gonopodial thrusts and thrust attempts than outbred males (δ = 0.38). We show that this behaviour is closely linked with fitness as gonopodial performance correlates with paternity success. Other traits that show inbreeding depression are offspring viability (δ = 0.06) and maturation time of males (δ = 0.19) and females (δ = 0.14). Outbred matings produced a female biased sex ratio whereas inbred matings produced an even sex ratio.  相似文献   

18.
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.  相似文献   

19.
In advanced generation seed orchards, tradeoffs exist between genetic gain obtained by selecting the best related individuals for seed orchard populations, and potential losses due to subsequent inbreeding between these individuals. Although inbreeding depression for growth rate is strong in most forest tree species at the individual tree level, the effect of a small proportion of inbreds in seed lots on final stand yield may be less important. The effects of inbreeding on wood production of mature stands cannot be assessed empirically in the short term, thus such effects were simulated for coastal Douglas fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] using an individual-tree growth and yield model TASS (Tree and Stand Simulator). The simulations were based on seed set, nursery culling rates, and 10-year-old field test performance for trees resulting from crosses between unrelated individuals and for inbred trees produced through mating between half-sibs, full-sibs, parents and offspring and self-pollination. Results indicate that inclusion of a small proportion of related clones in seed orchards will have relatively low impacts on stand yields due to low probability of related individuals mating, lower probability of producing acceptable seedlings from related matings than from unrelated matings, and a greater probability of competition-induced mortality for slower growing inbred individuals than for outcrossed trees. Thus, competition reduces the losses expected due to inbreeding depression at harvest, particularly on better sites with higher planting densities and longer rotations. Slightly higher breeding values for related clones than unrelated clones would offset or exceed the effects of inbreeding resulting from related matings. Concerns regarding the maintenance of genetic diversity are more likely to limit inclusion of related clones in orchards than inbreeding depression for final stand yield.Communicated by O. Savolainen  相似文献   

20.
Daphnia (Crustacea: Cladocera) reproduce by cyclical parthenogenesis in which the sex of offspring is environmentally determined. Although numerous studies have demonstrated that factors such as crowding and short-day photoperiod stimulate male production, there is limited information on variation in allocation to male and female offspring for any species of Daphnia . The present study assessed the presence or absence of male production in 96 isofemale lines (clones) from each of eight populations of Daphnia pulex . An average of 37% (range 18–51%) of clones failed to produce males under crowded conditions in the laboratory. A subset of 14 of these non-male-producing clones also failed to produce males under short-day photoperiod (8L:16D). Three male-producing clones were within-clone mated as well as crossed to three non-male-producing clones to study the inheritance of the failure to produce males. The average frequency of non-male-producing F 1 progeny was significantly higher (58%, N = 486) among the outcrossed progeny than the inbred progeny (5%, N = 86). In addition, when sixteen of the male-producing outcrossed progeny were within-clone mated, only 7% ( N = 106) of the resulting F 2 progeny failed to produce males. These results are consistent with a genetic basis for the absence of male production. Average survival of the progeny from the nine outcrossed matings was more than twice (67%) that of the inbred progeny from the three within-clone matings (30%), suggesting that within-clone mating would result in significant inbreeding depression. We present a model that suggests that even low levels of inbreeding could allow non-male-producing females to be maintained in a population. The co-occurrence of non-male-producing females and females that produce both males and females in Daphnia pulex bears a similarity to the gynodioecious breeding system found in some plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号