首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During embryonic development, cell migration and cell differentiation are associated with dynamic modulations both in time and space of the repertoire and function of adhesion receptors, but the nature of the mechanisms responsible for their coordinated occurrence remains to be elucidated. Thus, migrating neural crest cells adhere to fibronectin in an integrin-dependent manner while maintaining reduced N-cadherin–mediated intercellular contacts. In the present study we provide evidence that, in these cells, the control of N-cadherin may rely directly on the activity of integrins involved in the process of cell motion. Prevention of neural crest cell migration using RGD peptides or antibodies to fibronectin and to β1 and β3 integrins caused rapid N-cadherin–mediated cell clustering. Restoration of stable intercellular contacts resulted essentially from the recruitment of an intracellular pool of N-cadherin molecules that accumulated into adherens junctions in tight association with the cytoskeleton and not from the redistribution of a preexisting pool of surface N-cadherin molecules. In addition, agents that cause elevation of intracellular Ca2+ after entry across the plasma membrane were potent inhibitors of cell aggregation and reduced the N-cadherin– mediated junctions in the cells. Finally, elevated serine/ threonine phosphorylation of catenins associated with N-cadherin accompanied the restoration of intercellular contacts. These results indicate that, in migrating neural crest cells, β1 and β3 integrins are at the origin of a cascade of signaling events that involve transmembrane Ca2+ fluxes, followed by activation of phosphatases and kinases, and that ultimately control the surface distribution and activity of N-cadherin. Such a direct coupling between adhesion receptors by means of intracellular signals may be significant for the coordinated interplay between cell–cell and cell–substratum adhesion that occurs during embryonic development, in wound healing, and during tumor invasion and metastasis.  相似文献   

2.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

3.
Receptor protein tyrosine phosphatase α (RPTPα) phosphatase activity is required for intracellular signaling cascades that are activated in motile cells and growing neurites. Little is known, however, about mechanisms that coordinate RPTPα activity with cell behavior. We show that clustering of neural cell adhesion molecule (NCAM) at the cell surface is coupled to an increase in serine phosphorylation and phosphatase activity of RPTPα. NCAM associates with T- and L-type voltage-dependent Ca2+ channels, and NCAM clustering at the cell surface results in Ca2+ influx via these channels and activation of NCAM-associated calmodulin-dependent protein kinase IIα (CaMKIIα). Clustering of NCAM promotes its redistribution to lipid rafts and the formation of a NCAM–RPTPα–CaMKIIα complex, resulting in serine phosphorylation of RPTPα by CaMKIIα. Overexpression of RPTPα with mutated Ser180 and Ser204 interferes with NCAM-induced neurite outgrowth, which indicates that neurite extension depends on NCAM-induced up-regulation of RPTPα activity. Thus, we reveal a novel function for a cell adhesion molecule in coordination of cell behavior with intracellular phosphatase activity.  相似文献   

4.
In eukaryotic cells, COPI vesicles retrieve resident proteins to the endoplasmic reticulum and mediate intra-Golgi transport. Here, we studied the Hansenula polymorpha homologue of the Saccharomyces cerevisiae RET1 gene, encoding α-COP, a subunit of the COPI protein complex. H. polymorpha ret1 mutants, which expressed truncated α-COP lacking more than 300 C-terminal amino acids, manifested an enhanced ability to secrete human urokinase-type plasminogen activator (uPA) and an inability to grow with a shortage of Ca2+ ions, whereas a lack of α-COP expression was lethal. The α-COP defect also caused alteration of intracellular transport of the glycosylphosphatidylinositol-anchored protein Gas1p, secretion of abnormal uPA forms, and reductions in the levels of Pmr1p, a Golgi Ca2+-ATPase. Overexpression of Pmr1p suppressed some ret1 mutant phenotypes, namely, Ca2+ dependence and enhanced uPA secretion. The role of COPI-dependent vesicular transport in cellular Ca2+ homeostasis is discussed.  相似文献   

5.
When cells are stimulated to move, for instance during development, wound healing or angiogenesis, they undergo changes in the turnover of their cell-matrix adhesions. This is often accompanied by alterations in the expression profile of integrins—the extracellular matrix receptors that mediate anchorage within these adhesions. Here, we discuss how a shift in expression between two different types of integrins that bind fibronectin can have dramatic consequences for cell-matrix adhesion dynamics and cell motility.Key words: integrin, fibronectin, migration, cytoskeleton, dynamicsCells attach to the extracellular matrix (ECM) that surrounds them in specialized structures termed “cell-matrix adhesions.” These come in different flavors including “focal complexes” (small adhesions found in membrane protrusions of spreading and migrating cells), “focal adhesions” (larger adhesions connected by F-actin stress fibers that are derived from focal complexes in response to tension), “fibrillar adhesions” (elongated adhesions associated with fibronectin matrix assembly), and proteolytically active adhesions termed “podosomes” or “invadopodia” found in osteoclasts, macrophages and certain cancer cells. Common to all these structures is the local connection between ECM proteins outside- and the actin cytoskeleton within the cell through integrin transmembrane receptors. The intracellular linkage to filamentous actin is indirect through proteins that concentrate in cell-matrix adhesions such as talin, vinculin, tensin, parvins and others.1Cell migration is essential for embryonic development and a number of processes in the adult, including immune cell homing, wound healing, angiogenesis and cancer metastasis. In moving cells, cell-matrix adhesion turnover is spatiotemporally controlled.2 New adhesions are made in the front and disassembled in the rear of cells that move along a gradient of motogenic factors or ECM proteins. This balance between formation and breakdown of cell-matrix adhesions is important for optimal cell migration. Several mechanisms regulate the turnover of cell-matrix adhesions. Proteolytic cleavage of talin has been identified as an important step in cell-matrix adhesion disassembly3 and FAK and Src family kinases are required for cell-matrix adhesion turnover and efficient cell migration.4,5 Besides regulating phospho-tyrosine-mediated protein-protein interactions within cell-matrix adhesions, the FAK/Src complex mediates signaling downstream of integrins to Rho GTPases, thus controlling cytoskeletal organization.6,7 The transition from a stationary to a motile state could involve (local) activation of such mechanisms.Interestingly, conditions of increased cell migration (development, wound healing, angiogenesis, cancer metastasis) are accompanied by shifts in integrin expression with certain integrins being lost and others gained. Most ECM proteins can be recognized by various different integrins. For instance, the ECM protein, fibronectin (Fn) can be recognized by nine different types of integrins and most of these bind to the Arg-Gly-Asp (RGD) motif in the central cell-binding domain. Thus, cell-matrix adhesions formed on Fn contain a mixture of different integrins and shifts in expression from one class of Fn-binding integrins to another will alter the receptor composition of such adhesions. This may provide an alternative means to shift from stationary to motile.Indeed, we have found that the type of integrins used for binding to Fn strongly affects cell migration. We made use of cells deficient in certain Fn-binding integrins and either restored their expression or compensated for their absence by overexpression of alternative Fn-binding integrins. This allowed us to compare in a single cellular background cell-matrix adhesions containing α5β1 to those containing αvβ3. Despite the fact that these integrins support similar levels of adhesion to Fn, only α5β1 was found to promote a contractile, fibroblastic morphology with centripetal orientation of cell-matrix adhesions8 (Fig. 1). Moreover, RhoA activity is high in the presence of α5β1 and these cells move in a random fashion with a speed of around 25 mm/h. By contrast, in cells using αvβ3 instead, adhesions distribute across the ventral surface, RhoA activity is low, and these cells move with similar speed but in a highly persistent fashion.8,9 Finally, photobleaching experiments using GFP-vinculin and GFP-paxillin demonstrated that cell-matrix adhesions containing α5β1 are highly dynamic whereas adhesions containing αvβ3 are more static.9Open in a separate windowFigure 1Immunofluorescence images. GE11 cells, epithelial β1 knockout cells derived from mouse embryos chimeric for the integrin β1 subunit endogenously express various av integrins, including low levels of αvβ3 and αvβ5. Ectopic expression of β1 leads to expression of α5β1 and induced α5β1-mediated adhesion to Fn (left image) whereas ectopic expression of β3 (in the β1 null background) leads to strong expression of αvβ3 and induced αvβ3-mediated adhesion to Fn (right image). Adhesions containing either α5β1 or αvβ3 show distinct distribution and dynamics (paxillin; green) and cause different F-actin organization (phalloidin; red). Cartoons: Differences in cell-matrix adhesion dynamics may be explained by differential binding of soluble Fn molecules (blue) or different molecular determinants of the interaction with immobilized Fn (red). See text for details.It has been observed that α5β1 and αvβ3 use different recycling routes. Interfering with Rab4-mediated recycling of αvβ3 causes increased Rab11-mediated recycling of α5β1 to the cell surface. In agreement with our findings, the shift to α5β1 leads to increased Rho-ROCK activity and reduced persistence of migration.10 One possible explanation for the different types of migration promoted by these two Fn-binding integrins might involve different signaling and/or adaptor proteins interacting with specific amino acids in their cytoplasmic tails. However, this appears not to be the case: α5β1 in which the cytoplasmic tails of α5 or β1 are replaced by those of αv or β3, respectively, behaves identical to wild type α5β1: it promotes a fibroblast-like morphology with centripetal orientation of cell-matrix adhesions and it drives a non-persistent mode of migration.8,11 Together, these findings point to differences between α5β1 and αvβ3 integrins in the mechanics of their interaction with Fn, which apparently modulates intracellular signaling pathways in control of cell-matrix adhesion dynamics and cell migration.How might this work? It turns out that although α5β1 and αvβ3 similarly support cell adhesion to immobilized (stretched) Fn, only α5β1 efficiently binds soluble, folded (“inactive”) Fn.11 We have proposed that such interactions with soluble Fn molecules (possibly secreted by the cell itself) may weaken the interaction with the immobilized ligand thereby causing enhanced cell-matrix adhesion dynamics in the presence of α5β1,11 (Fig. 1). Preferential binding of soluble Fn by α5β1 could be explained by differences in accessibility of the RGD binding pocket between α5β1 (more exposed) and αvβ3 (more hidden) as suggested by others.12 If this is the case, immobilization (“stretching”) of Fn apparently leads to reorientation of the RGD motif in such a way that it is easily accessed by both integrins.The issue is considerably complicated by the fact that other recognition motifs are present in the Fn central cell-binding domain. In addition to the RGD sequence in the tenth Fn type 3 repeat (IIIFn10), binding of α5β1, but not αvβ3, also depends on the PHSRN “synergy” sequence in IIIFn9.1315 The relative contribution of these motifs is controversial and there is structural data pointing either towards a model in which IIIFn9 interacts with α5β1 or towards a model in which IIIFn9 exerts long-range electrostatic steering resulting in a higher affinity interaction without contacting the integrin.16,17 Cell adhesion studies have suggested that an interaction of α5β1 with the synergy region stabilizes the binding to RGD.14,18 Such a two-step interaction may facilitate binding to full length, folded Fn for instance by altering the tilt angle between IIIFn9 and IIIFn10 leading to optimal exposure of the RGD loop, perhaps explaining why αvβ3 (which may not interact with the synergy site) poorly binds soluble Fn.Others have shown that the RGD motif alone is sufficient for mechanical coupling of αvβ3 to Fn whereas the synergy region is required to provide mechanical strength to the α5β1-Fn bond.19 It appears that the interaction of α5β1 with Fn is particularly dynamic with various conformations of α5β1 interacting with different Fn binding surfaces, including the RGD and synergy sequences as well as other regions in IIIFn9. Thus, besides the above model based on differential binding to soluble Fn molecules, differences in the complexity and dynamics of interactions with immobilized Fn that determine functional binding strength could also underlie the different dynamics of cell-matrix adhesions containing either α5β1 or αvβ3 (Fig. 1).Precisely how mechanical differences in receptor-ligand interactions result in such remarkably distinct cellular responses is poorly understood. In addition to effects on cell-matrix adhesion dynamics and cytoskeletal organization it is also associated with different activities of Rho GTPases, indicating that mechanical differences between these two integrins must translate into differential activation of intracellular signaling pathways.8,9,11 Possibly, different adhesion dynamics due to distinct mechanisms of receptor-ligand interaction result in different patterns of F-actin organization, which, in turn, affects the formation of signaling platforms. It is also possible that differences in the extent of integrin clustering have an impact on the conformation of one or more cytoplasmic components of the cell-matrix adhesions containing either α5β1 or αvβ3. This could lead to hiding or exposing binding sites for signaling molecules (e.g., upstream regulators of Rho GTPases) or substrates. Whatever the mechanism involved, altering the integrin composition of cell-matrix adhesions through shifts in integrin expression as observed during development, angiogenesis, wound healing and cancer progression may be a driving force in the enhanced cell migration that characterizes those processes.  相似文献   

6.
The β-subunit of the dihydropyridine receptor (DHPR) enhances the Ca2+ channel and voltage-sensing functions of the DHPR. In skeletal myotubes, there is additional modulation of DHPR functions imposed by the presence of ryanodine receptor type-1 (RyR1). Here, we examined the participation of the β-subunit in the expression of L-type Ca2+ current and charge movements in RyR1 knock-out (KO), β1 KO, and double β1/RyR1 KO myotubes generated by mating heterozygous β1 KO and RyR1 KO mice. Primary myotube cultures of each genotype were transfected with various β-isoforms and then whole-cell voltage-clamped for measurements of Ca2+ and gating currents. Overexpression of the endogenous skeletal β1a isoform resulted in a low-density Ca2+ current either in RyR1 KO (36 ± 9 pS/pF) or in β1/RyR1 KO (34 ± 7 pS/pF) myotubes. However, the heterologous β2a variant with a double cysteine motif in the N-terminus (C3, C4), recovered a Ca2+ current that was entirely wild-type in density in RyR1 KO (195 ± 16 pS/pF) and was significantly enhanced in double β1/RyR1 KO (115 ± 18 pS/pF) myotubes. Other variants tested from the four β gene families (β1a, β1b, β1c, β3, and β4) were unable to enhance Ca2+ current expression in RyR1 KO myotubes. In contrast, intramembrane charge movements in β2a-expressing β1a/RyR1 KO myotubes were significantly lower than in β1a-expressing β1a/RyR1 KO myotubes, and the same tendency was observed in the RyR1 KO myotube. Thus, β2a had a preferential ability to recover Ca2+ current, whereas β1a had a preferential ability to rescue charge movements. Elimination of the double cysteine motif (β2a C3,4S) eliminated the RyR1-independent Ca2+ current expression. Furthermore, Ca2+ current enhancement was observed with a β2a variant lacking the double cysteine motif and fused to the surface membrane glycoprotein CD8. Thus, tethering the β2a variant to the myotube surface activated the DHPR Ca2+ current and bypassed the requirement for RyR1. The data suggest that the Ca2+ current expressed by the native skeletal DHPR complex has an inherently low density due to inhibitory interactions within the DHPR and that the β1a-subunit is critically involved in process.  相似文献   

7.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

8.
Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell–matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell–vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvβ5, and that active PAK4 induces accelerated integrin αvβ5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvβ5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.  相似文献   

9.
Chondroadherin (the 36-kD protein) is a leucine-rich, cartilage matrix protein known to mediate adhesion of isolated chondrocytes. In the present study we investigated cell surface proteins involved in the interaction of cells with chondroadherin in cell adhesion and by affinity purification. Adhesion of bovine articular chondrocytes to chondroadherin-coated dishes was dependent on Mg2+ or Mn2+ but not Ca2+. Adhesion was partially inhibited by an antibody recognizing β1 integrin subunit. Chondroadherin-binding proteins from chondrocyte lysates were affinity purified on chondroadherin-Sepharose. The β1 integrin antibody immunoprecipitated two proteins with molecular mass ~110 and 140 kD (nonreduced) from the EDTA-eluted material. These results indicate that a β1 integrin on chondrocytes interacts with chondroadherin. To identify the α integrin subunit(s) involved in interaction of cells with the protein, we affinity purified chondroadherin-binding membrane proteins from human fibroblasts. Immunoprecipitation of the EDTA-eluted material from the affinity column identified α2β1 as a chondroadherin-binding integrin. These results are in agreement with cell adhesion experiments where antibodies against the integrin subunit α2 partially inhibited adhesion of human fibroblast and human chondrocytes to chondroadherin. Since α2β1 also is a receptor for collagen type II, we tested the ability of different antibodies against the α2 subunit to inhibit adhesion of T47D cells to collagen type II and chondroadherin. The results suggested that adhesion to collagen type II and chondroadherin involves similar or nearby sites on the α2β1 integrin. Although α2β1 is a receptor for both collagen type II and chondroadherin, only adhesion of cells to collagen type II was found to mediate spreading.  相似文献   

10.
Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.  相似文献   

11.
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+.  相似文献   

12.
Programmed necrosis is a mechanism of cell death that has been described for neuronal excitotoxicity and ischemia/reperfusion injury, but has not been extensively studied in the context of exposure to bacterial exotoxins. The α-toxin of Clostridium septicum is a β-barrel pore-forming toxin and a potent cytotoxin; however, the mechanism by which it induces cell death has not been elucidated in detail. We report that α-toxin formed Ca2+-permeable pores in murine myoblast cells, leading to an increase in intracellular Ca2+ levels. This Ca2+ influx did not induce apoptosis, as has been described for other small pore-forming toxins, but a cascade of events consistent with programmed necrosis. Ca2+ influx was associated with calpain activation and release of cathepsins from lysosomes. We also observed deregulation of mitochondrial activity, leading to increased ROS levels, and dramatically reduced levels of ATP. Finally, the immunostimulatory histone binding protein HMGB1 was found to be released from the nuclei of α-toxin-treated cells. Collectively, these data show that α-toxin initiates a multifaceted necrotic cell death response that is consistent with its essential role in C. septicum-mediated myonecrosis and sepsis. We postulate that cellular intoxication with pore-forming toxins may be a major mechanism by which programmed necrosis is induced.  相似文献   

13.
The β1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms (“common” region) and a distal subdomain specific for each isoform (“variable” region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used β1A and β1B isoforms as well as four mutants lacking the entire cytoplasmic domain (β1TR), the variable region (β1COM), or the common region (β1ΔCOM-B and β1ΔCOM-A). By expressing these constructs in Chinese hamster ovary and β1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol 132, 227–238, 1996), we show that β1B, β1COM, β1ΔCOM-B, and β1ΔCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn++ ions, however, β1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that β1B interferes in a dominant negative manner with β1A and β3/β5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the β1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the β1B isoform.  相似文献   

14.

Background

In frog skeletal muscle, two ryanodine receptor (RyR) isoforms, α-RyR and β-RyR, are expressed in nearly equal amounts. However, the roles and significance of the two isoforms in excitation-contraction (E-C) coupling remains to be elucidated.

Methodology/Principal Findings

In this study, we expressed either or both α-RyR and β-RyR in 1B5 RyR-deficient myotubes using the herpes simplex virus 1 helper-free amplicon system. Immunological characterizations revealed that α-RyR and β-RyR are appropriately expressed and targeted at the junctions in 1B5 myotubes. In Ca2+ imaging studies, each isoform exhibited caffeine-induced Ca2+ transients, an indicative of Ca2+-induced Ca2+ release (CICR). However, the fashion of Ca2+ release events was fundamentally different: α-RyR mediated graded and sustained Ca2+ release observed uniformly throughout the cytoplasm, whereas β-RyR supported all-or-none type regenerative Ca2+ oscillations and waves. α-RyR but not β-RyR exhibited Ca2+ transients triggered by membrane depolarization with high [K+]o that were nifedipine-sensitive, indicating that only α-RyR mediates depolarization-induced Ca2+ release. Myotubes co-expressing α-RyR and β-RyR demonstrated high [K+]o-induced Ca2+ transients which were indistinguishable from those with myotubes expressing α-RyR alone. Furthermore, procaine did not affect the peak height of high [K+]o-induced Ca2+ transients, suggesting minor amplification of Ca2+ release by β-RyR via CICR in 1B5 myotubes.

Conclusions/Significance

These findings suggest that α-RyR and β-RyR provide distinct intracellular Ca2+ signals in a myogenic cell line. These distinct properties may also occur in frog skeletal muscle and will be important for E-C coupling.  相似文献   

15.
Cell adhesion-mediated drug resistance contributes to minimal residual disease and relapse in hematological malignancies. Here, we show that adhesion of Jurkat T-acute lymphoblastic leukemia cells to substrates engaging α4β1-integrin or α5β1-integrin promotes chemoresistance to doxorubicin-induced apoptosis. Reconstituted expression of α4δ, a truncated α4-integrin with KXGFFKR as the cytoplasmic motif, in α4-deficient cells promoted chemoresistance to doxorubicin in a manner independent of α4-mediated adhesion. The adhesion-independent chemoresistance did not require β1-integrin as the heterodimeric pair, since expression of Tacδ, a monomeric nonintegrin transmembrane protein fused to the juxtamembrane KXGFFKR, was sufficient to reproduce the phenomenon. The requirement for integrin-mediated adhesion in stimulation of Akt phosphorylation and activation was bypassed for cells expressing α4δ and Tacδ. Cells expressing α4δ and Tacδ exhibited a high influx of extracellular Ca2+, and inhibition of Ca2+ channels with verapamil attenuated the adhesion-independent chemoresistance. Tacδ cells also exhibited greater rates of drug efflux. α4δ and Tacδ interacted with the Ca2+-binding protein calreticulin, in a manner dependent on the KXGFFKR motif. Adhesion-mediated engagement of α4-integrins promoted an increased calreticulin-α4 association and greater influx of extracellular Ca2+ than in nonadherent cells. The α-integrin KXGFFKR motif is involved in adhesion-mediated control of chemoresistance in T cells.  相似文献   

16.
17.
Cells are capable of adhering to and migrating on protein components of the extracellular matrix. These cell-matrix interactions are thought to be mediated largely through a family of cell surface receptors termed integrins. However, the manner in which individual integrins are involved in cell adhesion and motility has not been fully determined. To explore this issue, we previously selected a series of CHO variants that are deficient in expression of the integrin alpha 5 beta 1, the "classical" fibronectin receptor. Two sets of subclones of these variants were defined which respectively express approximately 20% or 2% of fibronectin receptor on the cell surface when compared to wild-type cells (Schreiner, C. L., J. S. Bauer, Y. N. Danilov, S. Hussein, M. M. Sczekan, and R. L. Juliano. 1989. J. Cell Biol. 109:3157-3167). In the current study, the variant clones were tested for haptotactic motility on substrata coated with fibronectin or vitronectin. Data from assays using fibronectin show that cellular motility of the 20% variants was substantially decreased (30-75% of wild type), while the motility of the 2% variants was nearly abolished (2-20% of wild type). Surprisingly, a similar pattern was seen for haptotactic motility of both 2% and 20% variants when vitronectin was used (approximately 20-30% of wild type). The reduced haptotactic motility of the fibronectin receptor-deficient variant clones on vitronectin was shown not to be due to reduced vitronectin receptor (alpha v beta 3) expression nor to a failure of these variants to adhere to vitronectin substrata. Transfection of the deficient variants with a cDNA for the human alpha 5 subunit resulted in normal levels of fibronectin receptor expression (as a human alpha 5/hamster beta 1 chimera) and restored the motility of the CHO variants on fibronectin and vitronectin. This indicates that expression of the alpha 5 subunit is required for normal haptotactic motility on vitronectin substrata and suggests that the fibronectin receptor (alpha 5 beta 1) plays a cooperative role with vitronectin receptors in cell motility.  相似文献   

18.
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.  相似文献   

19.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

20.
Assembly and modulation of focal adhesions during dynamic adhesive processes are poorly understood. We describe here the use of ventral plasma membranes from adherent fibroblasts to explore mechanisms regulating integrin distribution and function in a system that preserves the integration of these receptors into the plasma membrane. We find that partial disruption of the cellular organization responsible for the maintenance of organized adhesive sites allows modulation of integrin distribution by divalent cations. High Ca2+ concentrations induce quasi-reversible diffusion of β1 integrins out of focal adhesions, whereas low Ca2+ concentrations induce irreversible recruitment of β1 receptors along extracellular matrix fibrils, as shown by immunofluorescence and electron microscopy. Both effects are independent from the presence of actin stress fibers in this system. Experiments with cells expressing truncated β1 receptors show that the cytoplasmic portion of β1 is required for low Ca2+-induced recruitment of the receptors to matrix fibrils. Analysis with function-modulating antibodies indicates that divalent cation-mediated receptor distribution within the membrane correlates with changes in the functional state of the receptors. Moreover, reconstitution experiments show that purified α-actinin colocalizes and redistributes with β1 receptors on ventral plasma membranes depleted of actin, implicating binding of α-actinin to the receptors. Finally, we found that recruitment of exogenous actin is specifically restricted to focal adhesions under conditions in which new actin polymerization is inhibited. Our data show that the described system can be exploited to investigate the mechanisms of integrin function in an experimental setup that permits receptor redistribution. The possibility to uncouple, under cell-free conditions, events involved in focal adhesion and actin cytoskeleton assembly should facilitate the comprehension of the underlying molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号