首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noncovalent molecular adapters, such as cyclodextrins, act as binding sites for channel blockers when lodged in the lumen of the alpha-hemolysin (alphaHL) pore, thereby offering a basis for the detection of a variety of organic molecules with alphaHL as a sensor element. beta-Cyclodextrin (betaCD) resides in the wild-type alphaHL pore for several hundred microseconds. The residence time can be extended to several milliseconds by the manipulation of pH and transmembrane potential. Here, we describe mutant homoheptameric alphaHL pores that are capable of accommodating betaCD for tens of seconds. The mutants were obtained by site-directed mutagenesis at position 113, which is a residue that lies near a constriction in the lumen of the transmembrane beta barrel, and fall into two classes. Members of the tight-binding class, M113D, M113N, M113V, M113H, M113F and M113Y, bind betaCD approximately 10(4)-fold more avidly than the remaining alphaHL pores, including WT-alphaHL. The lower K(d) values of these mutants are dominated by reduced values of k(off). The major effect of the mutations is most likely a remodeling of the binding site for betaCD in the vicinity of position 113. In addition, there is a smaller voltage-sensitive component of the binding, which is also affected by the residue at 113 and may result from transport of the neutral betaCD molecule by electroosmotic flow. The mutant pores for which the dwell time of betaCD is prolonged can serve as improved components for stochastic sensors.  相似文献   

2.
Fibroblast growth factor-2 (FGF2) is produced and released by endothelial cells and binds to heparan sulfate proteoglycans in the endothelial basement membrane (BM), an important FGF2 storage reservoir. Experimental and computational models of FGF2 binding kinetics to both cells and BM under static conditions are well established in the literature but remain largely unexplored under flow. We now examine BM-FGF2 binding kinetics in fluid flow conditions. We hypothesized that FGF2 binding to the endothelial BM would decrease as fluid shear stress increased. To investigate this, BM-FGF2 equilibrium, associative, and dissociative bindings were measured at various shear stresses. Surprisingly, FGF2 binding increased up to a physiological arterial shear stress of 25 dynes/cm2, after which it decreased to a level similar to the 1 dyne/cm2 condition. Both BM-FGF2 dissociation and BM binding site availability increased with flow, while association remained constant. This suggests that force-dependent FGF2 equilibrium binding varies with shear stress due to a combination of an increase in binding site availability and FGF2 dissociation with flow. This improved understanding of BM-FGF2 binding with flow enriches current knowledge of FGF2 binding kinetics under physiologic conditions, which may contribute to improved growth factor therapy development.  相似文献   

3.
4.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

5.
Staphylococcal alpha-hemolysin (alphaHL) is a beta barrel pore-forming toxin that is secreted by the bacterium as a water-soluble monomeric protein. Upon binding to susceptible cells, alphaHL assembles via an inactive prepore to form a water-filled homoheptameric transmembrane pore. The N terminus of alphaHL, which in the crystal structure of the fully assembled pore forms a latch between adjacent subunits, has been thought to play a vital role in the prepore to pore conversion. For example, the deletion of two N-terminal residues produced a completely inactive protein that was arrested in assembly at the prepore stage. In the present study, we have re-examined assembly with a comprehensive set of truncation mutants. Surprisingly, we found that after truncation of up to 17 amino acids, the ability of alphaHL to form functional pores was diminished, but still substantial. We then discovered that the mutation Ser(217) --> Asn, which was present in our original set of truncations but not in the new ones, promotes complete inactivation upon truncation of the N terminus. Therefore, the N terminus of alphaHL cannot be critical for the prepore to pore transformation as previously thought. Residue 217 is involved in the assembly process and must interact indirectly with the distant N terminus during the last step in pore formation. In addition, we provide evidence that an intact N terminus prevents the premature oligomerization of alphaHL monomers in solution.  相似文献   

6.
G Akk  A Auerbach 《Biophysical journal》1996,70(6):2652-2658
The properties of adult mouse recombinant nicotinic acetylcholine receptors activated by acetylcholine (ACh+) or tetramethylammonium (TMA+) were examined at the single-channel level. The midpoint of the dose-response curve depended on the type of monovalent cation present in the extracellular solution. The shifts in the midpoint were apparent with both inward and outward currents, suggesting that the salient interaction is with the extracellular domain of the receptor. Kinetic modeling was used to estimate the rate constants for agonist binding and channel gating in both wild-type and mutant receptors exposed to Na+, K+, or Cs+. The results indicate that in adult receptors, the two binding sites have the same equilibrium dissociation constant for agonists. The agonist association rate constant was influenced by the ionic composition of the extracellular solution whereas the rate constants for agonist dissociation, channel opening, and channel closing were not. In low-ionic-strength solutions the apparent association rate constant increased in a manner that suggests that inorganic cations are competitive inhibitors of ACh+ binding. There was no evidence of an electrostatic potential at the transmitter binding site. The equilibrium dissociation constants for inorganic ions (Na+, 151 mM; K+, 92 mM; Cs+, 38 mM) and agonists (TMA+, 0.5 mM) indicate that the transmitter binding site is hydrophobic. Under physiological conditions, about half of the binding sites in resting receptors are occupied by Na+.  相似文献   

7.
Kinetic parameters have been determined for the binding of progesterone to receptor proteins of the chick oviduct. Association and dissociation rate constants and the equilibrium constant have been determined as a function of temperature and ionic strength. Both the association and dissociation rate constants vary with temperature by about 2 orders of magnitude. However the equilibrium constant for the binding reaction does not change substantially over the temperature interval from 0 to 24°. The half-life of the complex under pseudo first-order conditions decreases from about 10 h at 0° to about 3 min at body temperature of the animal (42°). Arrhenius plots of the dissociation rate constant information show a linear plot over the temperature range studied indicating that the aggregation and the conformational changes accompanying this temperature range do not cause any apparent change in the hormone binding site.On the other hand glycerol has a considerable stabilizing effect on the receptors increasing the half-life at 24° from about 24 min to a matter of about 100 min as the glycerol concentration is increased to 40%. The hormone binding site can be disrupted irreversibly by high salt or urea concentrations in excess of one molar. Ionic strength over the range from 0–0.5 M has essentially no effect on any of the parameters measured. The half-life of the complexes decreases by only about 10–15% over this interval.The possible perturbation of the hormone binding sites accompanying binding of the proteins to ion exchange resins was studied. There is no detectable change in any of the kinetic parameters when the receptor protein is adsorbed to either DEAE cellulose or phosphocellulose. The hormone binding characteristics of the protein remain the same for up to 100 hours; only a single class of hormone binding site could be detected. Variations in half-life accompanying dissociation of hormone off the receptors was shown to be due merely to the presence of non specific binding in the preparation. The study concludes that the conformation of the hormone binding site is not strongly perturbed by the environment of the protein.  相似文献   

8.
L J Maher  P B Dervan  B J Wold 《Biochemistry》1990,29(37):8820-8826
Pyrimidine oligonucleotides recognize extended purine sequences in the major groove of double-helical DNA by triple-helix formation. The resulting local triple helices are relatively stable and can block DNA recognition by sequence-specific DNA binding proteins such as restriction endonucleases. Association and dissociation kinetics for the oligodeoxyribonucleotide 5'-CTCTTTCCTCTCTTTTTCCCC (bold C's indicate 5-methylcytosine residues) are now measured with a restriction endonuclease protection assay. When oligonucleotides are present in greater than 10-fold excess over the DNA target site, the binding reaction kinetics are pseudo first order in oligonucleotide concentration. Under our standard conditions (37 degrees C, 25 mM Tris-acetate, pH 6.8, 70 mM sodium chloride, 20 mM magnesium chloride, 0.4 mM spermine tetrahydrochloride, 10 mM beta-mercaptoethanol, 0.1 mg/mL bovine serum albumin) the value of the observed pseudo-first-order association rate constant, k2obs, is 1.8 x 10(3) +/- 1.9 x 10(2) L.(mol of oligomer-1.s-1. Measurement of the dissociation rate constant yields an equilibrium dissociation constant of approximately 10 nM. Increasing sodium ion concentration slightly decreased the association rate, substantially increased the dissociation rate, and thereby reduced the equilibrium binding constant. This effect was reversible by increasing multivalent cation concentration, confirming the significant role of multivalent cations in oligonucleotide-directed triple-helix formation under these conditions. Finally, a small reduction in association rate, a large increase in dissociation rate, and a resulting reduction in the equilibrium binding constant were observed upon increasing the pH between 6.8 and 7.2.  相似文献   

9.
J Chen  Y Zhang  G Akk  S Sine    A Auerbach 《Biophysical journal》1995,69(3):849-859
Affinity labeling and mutagenesis studies have demonstrated that the conserved tyrosine Y190 of the acetylcholine receptor (AChR) alpha-subunit is a key determinant of the agonist binding site. Here we describe the binding and gating kinetics of embryonic mouse AChRs with mutations at Y190. In Y190F the dissociation constant for ACh binding to closed channels was reduced approximately 35-fold at the first binding site and only approximately 2-fold at the second site. At both binding sites the association and dissociation rate constants were decreased by the mutation. Compared with wildtype AChRs, doubly-liganded alpha Y190F receptors open 400 times more slowly but close only 2 times more rapidly. Considering the overall activation reaction (vacant-closed to fully occupied-open), there is an increase of approximately 6.4 kcal/mol caused by the Y-to-F mutation, of which at least 2.1 and 0.3 kcal/mol comes from altered agonist binding to the first and second binding sites, respectively. The closing rate constant of alpha Y190F receptors was the same with ACh, carbamoylcholine, or tetramethylammonium as the agonist. This rate constant was approximately 3 times faster in ACh-activated S, W, and T mutants. The equilibrium dissociation constant for channel block by ACh was approximately 2-fold lower in alpha Y190F receptors compared with in wildtype receptors, suggesting that there are changes in the pore region of the receptor as a consequence of the mutation. The activation reaction is discussed with regard to energy provided by agonist-receptor binding contacts, and by the intrinsic folding energy of the receptor.  相似文献   

10.
We investigated the kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum Ca2(+)-ATPase by combining fast filtration with stopped-flow fluorescence measurements. At pH 6 and 20 degrees C, in the absence of potassium and in the presence of 20 mM MgCl2, isotopic exchange of bound calcium exhibited biphasic kinetics, with two phases of equal amplitude, regardless of the initial extent of binding site saturation. The rapidly exchangeable site, whose occupancy by calcium controlled the rate constant of the slow phase, had an apparent affinity for calcium of about 3-6 microM. A similar high affinity was also deduced from measurements of the calcium dependence of the rate constant for ATPase fluorescence changes. This affinity was higher than the overall affinity for calcium deduced from the equilibrium binding measurements (dissociation constant of 15-20 microM); this was consistent with the occurrence of cooperativity (Hill coefficient of 1.6-1.8). The drop in intrinsic fluorescence observed upon chelation of calcium was always slightly faster than the dissociation of calcium itself, although the rates for both this drop in fluorescence and calcium dissociation varied slightly from one preparation to the other. This fluorescence drop was therefore mainly due to dissociation of the bound ions, not to slow transconformation of the ATPase. Dissociation of the two bound calcium ions in a medium containing EGTA exhibited monophasic kinetics in the presence of a calcium ionophore, with a rate constant about half that of the fast phase of isotopic exchange. This particular pattern was observed over a wide range of experimental conditions, including the presence of KCl, dimethyl sulfoxide, 4-nonylphenol, or a nucleotide analogue, at pH 6 or 7, and at various temperatures. The kinetics of calcium dissociation under the above various conditions were not correlated with the ATPase affinity for calcium deduced from equilibrium measurements under the same conditions. These results are consistent with sequential dissociation of calcium from a narrow binding pocket inside which a single calcium ion can move fairly easily. Escape of calcium might be controlled by a structural compartment acting as a gate.  相似文献   

11.
The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only.  相似文献   

12.
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.  相似文献   

13.
The aggregation of IgE anchored to high-affinity Fc epsilon receptors on rat basophilic leukemia (RBL) cells by multivalent antigens initiates transmembrane signaling and ultimately cellular degranulation. Previous studies have shown that the rate of dissociation of bivalent and multivalent DNP ligands from RBL cells sensitized with anti-DNP IgE decreases with increasing ligand incubation times. One mechanism proposed for this effect is that when IgE molecules are aggregated, a conformational change occurs that results in an increase in the intrinsic affinity of IgE for antigen. This possibility was tested by measuring the equilibrium constant for the binding of monovalent DNP-lysine to anti-DNP IgE under two conditions, where the cell-bound IgE is dispersed and where it has been aggregated into visible patches on the cell surface using anti-IgE and a secondary antibody. No difference in the equilibrium constant in these two cases was observed. We also measured the rate of dissociation of a monovalent ligand from cell surface IgE under these two conditions. Whereas the affinity for monovalent ligand is not altered by IgE aggregation, we observe that the rate of ligand dissociation from IgE in clusters is slower than the rate of ligand dissociation from unaggregated IgE. These results are discussed in terms of recent theoretical developments concerning effects of receptor density on ligand binding to cell surfaces.  相似文献   

14.
Saturation analysis of equilibrium binding of iodinated thyrotropin (125I-TSH) to normal human thyroid preparations yielded linear Scatchard plots under non-physiological conditions of pH 6.0 or 20 mM Tris/acetate buffer, pH 7.4. The apparent equilibrium dissociation constant of this binding was approximately 10(-8) M. By contrast, nonlinear plots were obtained under standard conditions of pH 7.4 and 40 mM Tris/acetate buffer. Resolution of the components of these curves by computer analysis revealed the presence of at least two classes of binding sites, one of which is of a low capacity and high affinity (approximately 10(-10) M) consistent with receptor binding. The other component is of a high capacity and lower affinity. Binding to non-target tissues of muscle, parathyroid, mammary carcinoma, and placenta was only demonstrable at pH 6.0 or in 20 mM Tris/acetate buffer, pH 7.4, yielding linear Scatchard plots with similar binding affinity (approximately 10(-8)M) to normal thyroid but much reduced capacity. Preincubation of thyroid tissue at 50 degrees C resulted in an apparent selective loss of the high affinity component of binding measured under standard conditions. Kinetic experiments on the dissociation of bound 125I-TSH were undertaken to determine whether the non-linearity of Scatchard plots was due to two or more classes of binding sites or negative cooperativity. It was found that the experimental determinant that is presently ascribed to a negative cooperativity phenomenon regulating receptor affinity (i.e. an enhanced dilution-induced dissociation rate in the presence of excess native hormone), although apparently hormone-specific, was demonstrated under nonphysiological binding conditions and in non-target tissue. Significantly, the phenomenon was found under conditions of pH 6.0 or 20 mM Tris where a linear Scatchard plot was obtained. The evidence thus suggests that 125I-TSH binds to heterogeneous binding sites (of which the high affinity is probably the receptor for TSH) and that the enhanced dilution-induced dissociation of bound hormone by native hormone for this system, is only a characteristic of the low affinity binding site (maybe gangliosides).  相似文献   

15.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2968-2975
A study of the equilibrium binding of ADP, 1,N6-ethenoadenosine diphosphate, adenylyl imidodiphosphate, and 1,N6-ethenoadenylyl imidodiphosphate to solubilized spinach chloroplast coupling factor 1 (CF1) has been carried out. All four nucleotides were found to bind to two apparently identical "tight" sites, with characteristic dissociation contants generally less than 10 muM. The binding to these "tight" sites is similar in the presence of Mg2+ and Ca2+, is stronger in 0.1 M NaC1 than in 20 mM Tris-C1, and is only slightly altered by heat activation. The slow rate of association of ADP and 1,N6-ethenoadenosine diphosphate at these sites rules out the possibility that they are catalytic sites for ATPase activity on the solubilized enzyme. A third tight site for adenylyl imidodiphosphate was found on the heat-activated enzyme. The dissociation constant for this interaction (7.6 muM) is similar to the adenylyl imidodiphosphate competitive inhibition constant for ATPase activity (4 muM). ADP, which inhibits ATPase activity but is not a strong competitive inhibitor, binds only weakly at a third site (dissociation constant greater than 70 muM). One mole of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted per mole of CF1 prevents ADP and adenylyl imidodiphosphate binding at the "catalytic" site and abolishes the ATPase activity. A model is proposed in which the "tight" nucleotide binding sites act as allosteric conformational switches for the ATPase activity of solubilizedCF1.  相似文献   

16.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

17.
We are exploring the ability of genetically engineered versions of the Staphylococcus aureus alpha-hemolysin (alphaHL) ion channel to serve as rationally designed sensor components for analytes including divalent cations. We show here that neither the hemolytic activity nor the single channel current of wild-type alphaHL was affected by [Zn(II)] </= 1 mM. Binding sites for the divalent cations were formed by altering the number and location of coordinating side chains, e.g., histidines and aspartic acids, between positions 126 and 134, inclusive. Several mutant alphaHLs exhibited Zn(II)-induced current noise that varied with Zn(II) concentration. At a fixed divalent cation concentration, the current fluctuation kinetics depended on the analyte type, e.g., Zn(II), Cu(II), Ni(II), and Co(II). We also show that the ability of Zn(II) to change the mutant channel current suggests that the pore's topology is beta-sheet and that position 130 is near the turn at the trans mouth. Both conclusions are consistent with the crystal structure of WT-alphaHL oligomerized in detergent. Our results, in the context of the channel's crystal structure, suggest that conductance blockades were caused by Zn(II) binding to the outside surface of the pore. Thus, analyte-induced current blockades alone might not establish whether an analyte binding site is inside a pore.  相似文献   

18.
The potential storage and delivery function of cartilage oligomeric matrix protein (COMP) for cell signaling molecules was explored by binding hydrophobic compounds to the recombinant five-stranded coiled-coil domain of COMP. Complex formation with benzene, cyclohexane, vitamin D3 and elaidic acid was demonstrated through increases in denaturation temperatures of 2-10 degreesC. For all-trans retinol and all-trans retinoic acid, an equilibrium dissociation constant KD = 0.6 microM was evaluated by fluorescence titration. Binding of benzene and all-trans retinol into the hydrophobic axial pore of the COMP coiled-coil domain was proven by the X-ray crystal structures of the corresponding complexes at 0.25 and 0.27 nm resolution, respectively. Benzene binds with its plane perpendicular to the pore axis. The binding site is between the two internal rings formed by Leu37 and Thr40 pointing into the pore of the COMP coiled-coil domain. The retinol beta-ionone ring is positioned in a hydrophobic environment near Thr40, and the 1.1 nm long isoprene tail follows a completely hydrophobic region of the pore. Its terminal hydroxyl group complexes with a ring of the five side chains of Gln54. A mutant in which Gln54 is replaced by Ile binds all-trans retinol with affinity similar to the wild-type, demonstrating that hydrophobic interactions are predominant.  相似文献   

19.
Nucleotide binding affinity to Na,K-ATPase is reduced by a number of anions such as nitrate and perchlorate in comparison with affinity in the presence of chloride (all with sodium as the cation). The reduction correlates with the position of these anions in the Hofmeister series. Transient kinetic experiments using the fluorescent dye eosin—which binds to the nucleotide site of the Na,K-ATPase—show that simultaneous anion binding, exemplified with nitrate, and eosin binding is possible. The effect of nitrate on eosin binding is reflected in a decreased binding-rate constant and an increased dissociation rate constant, leading to a decreased equilibrium binding constant for eosin. Since eosin binding is analogous with nucleotide binding to Na,K-ATPase, the results suggest the simultaneous presence of nucleotide and anion binding sites.Abbreviations E1 the protein conformation in Na+ - E2 the enzyme conformation in K+ - Eo eosin (tetrabromofluorescein) - F fluorescence - I ionic strength - ki rate constant - Ki equilibrium dissociation constant - Ki,0 equilibrium dissociation constant at zero ionic strength - N nitrate - zi net charge - charge product zi·zj  相似文献   

20.
Angiotensin converting enzyme interacts with the chelator, 1,10-phenanthroline (OP) to form an OP-Zn-ACE ternary complex, which subsequently dissociates to OP-Zn and apoenzyme. The association and dissociation rate constants for the reaction OP + Zn-ACE in equilibrium OP-Zn-ACE have been determined and compared with those of known OP-metal complexes. Such constants were also used to calculate the rate constant for formation of the OP-Zn complex from OP-Zn-ACE. The rate of dissociation of zinc from ACE has been measured in the presence of EDTA (which acts only as a metal scavenger) as a function of chelator concentration, at different pH values, and with different buffers. The stability constant for the binding of zinc to apoACE log Kc = 8.2, determined by equilibrium dialysis using atomic absorption spectroscopy to assess metal concentration, is much smaller than that for Zn-carboxypeptidase A. Zn-thermolysin, or Zn-carbonic anhydrase. This weak binding is attributable to the zinc dissociation rate constant of ACE, 7.5 X 10(-3) sec-1 at pH 7.0, which is much greater than that of the other zinc metalloenzymes. These results lead to inferences regarding the metal binding site of ACE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号