首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

3.
Stability of the allergenic soybean Kunitz trypsin inhibitor   总被引:5,自引:0,他引:5  
The soybean Kunitz trypsin inhibitor (SKTI) is a 21.5 kDa allergenic protein that belongs to the family of all antiparallel beta-sheet proteins that are highly resistant to thermal and chemical denaturation. Spectroscopic and biochemical techniques such as circular dichroism (CD), ANS fluorescence and proteolysis were used to study its molecular structure under denaturing conditions such as acid and heat to which these allergens are commonly exposed during food processing. Reduction of native SKTI leads to its complete and rapid proteolysis by pepsin in simulated gastric fluid (SGF). Limited proteolysis with chymotrypsin during renaturation after heating showed that the native structure reforms at around 60 degrees C reversing the denaturation. CD spectra revealed that under acid denaturing conditions, SKTI shows major changes in conformation, indicating the possibility of a molten structure. The existence of this intermediate was established by ANS fluorescence studies at different concentrations of HCl. The remarkable stability of SKTI to both thermal and acid denaturation may be important for its role as a food allergen.  相似文献   

4.
Disulfide bonds in soybean trypsin inhibitor (Kunitz) were simultaneously reduced and alkylated using tri-n-butylphosphine and 2-vinylquinoline at pH 7.6 in 0.11 M Tris-4.4 M urea, 41% ethanol. The resulting S-β-2-quinolylethylated protein (2-QE-STI) has a new absorption peak at 315–318 nm. Its quinoline fluorescence can be excited above 310 nm independently of intrinsic protein fluorescence. Free 2-quinolylethylcysteine (2-QEC) shows unexpectedly weak fluorescence. Quinoline absorption in 2-QEC and 2-QE-STI changes with pH. The apparentpK values determined spectrophotometrically are near 5 for 2-QEC and 3 for 2-QE-STI. Fluorescence decreased with increasing pH and in the presence of chloride ions. Both structural and charge effects thus appear to influence the absorption and fluorescence of the quinoline group. Corrected fluorescence emission (excited at 316 nm) of neutral 2-QE-STI diluted in 0.1 N H2SO4 was directly proportional to concentration in the range 0.4–8 μm 2-QEC. The 2-QEC content of the protein derivative determined by UV absorption at pH 1.5 was in agreement with the expected value of four residues per mole. Fluorescence measurements ofS-2-quinolylethylated proteins may be especially useful as a sensitive, specific assay for cyst(e)ine residues.  相似文献   

5.
6.
The levels of chlorophyll a/b-binding protein (Cab) gene polysomal poly(A)+ mRNA were quantitated throughout the development of Glycine max L. Cab mRNAs were abundant in young expanding leaves, representing 6.1% of the leaf mRNA population. Lower Cab mRNA levels were present in embryos, stems, and cotyledons of developing seedlings; the lowest levels were found in roots where they accounted for 0.04% of the polysomal poly(A)+ mRNA of this organ. To determine the contribution of different members of the Cab gene family to the Cab mRNA populations, a quantitative S1 nuclease reconstruction assay was developed. Cab3, Cab4, and Cab5 mRNAs were detected in all stages examined during soybean development but their levels underwent differential changes. Cab3 encodes the most abundant Cab mRNA in young leaves, developing embryos, and in Stage VII cotyledons from the developing soybean seedling. The levels of Cab mRNAs were compared to the levels of ribulose-1,5-bisphosphate carboxylase small subunit gene mRNA and differences in their patterns of accumulation were noted. Collectively these data indicate that during soybean embryogenesis developmental control mechanisms supersede light-regulatory signals.  相似文献   

7.
8.
Three-fold structural pattern in the soybean trypsin inhibitor (Kunitz)   总被引:5,自引:0,他引:5  
The molecule contains three very similar irregular Y-shaped lobes of antiparallel twisted β-sheet, which are grouped symmetrically round a central axis and linked by hydrogen bonds to form a six-stranded barrel. Each lobe can be superposed on either neighbour by a rotation of approximately 120 °. Of the 160 residues seen in the X-ray electron density map, 101 may be superposed onto other residues within a root-mean-square distance of 2.1 Å. The bond which reacts with trypsin lies on a loop between the first two lobes. It is suggested that the protein evolved from a primitive symmetrical trimer of identical subunits by tandem gene triplication.  相似文献   

9.
10.
Disulfide bonds in soybean trypsin inhibitor (Kunitz) were simultaneously reduced and alkylated using tri-n-butylphosphine and 2-vinylquinoline at pH 7.6 in 0.11 M Tris-4.4 M urea, 41% ethanol. The resulting S--2-quinolylethylated protein (2-QE-STI) has a new absorption peak at 315–318 nm. Its quinoline fluorescence can be excited above 310 nm independently of intrinsic protein fluorescence. Free 2-quinolylethylcysteine (2-QEC) shows unexpectedly weak fluorescence. Quinoline absorption in 2-QEC and 2-QE-STI changes with pH. The apparentpK values determined spectrophotometrically are near 5 for 2-QEC and 3 for 2-QE-STI. Fluorescence decreased with increasing pH and in the presence of chloride ions. Both structural and charge effects thus appear to influence the absorption and fluorescence of the quinoline group. Corrected fluorescence emission (excited at 316 nm) of neutral 2-QE-STI diluted in 0.1 N H2SO4 was directly proportional to concentration in the range 0.4–8 m 2-QEC. The 2-QEC content of the protein derivative determined by UV absorption at pH 1.5 was in agreement with the expected value of four residues per mole. Fluorescence measurements ofS-2-quinolylethylated proteins may be especially useful as a sensitive, specific assay for cyst(e)ine residues.Reference to a company or product name does not imply approval or recommendation of the product by the U.S. Department of Agriculture to the exclusion of others that may be suitable.Abbreviations used are Mops: 3-(N-morpholino)propanesulfonic acid; STI: soybean trypsin inhibitor (Kunitz); 2-PE-STI:S--2-pyridylethylated STI; 2-QEC:S--(2-quinolylethyl)-l-cysteine; 2-QE-STI:S--2-quinolylethylated STI; TosPheCH2-trypsin: bovine trypsin treated withp-toluenesulfonyl phenylalanine chloromethyl ketone.  相似文献   

11.
12.
13.
Recently, microalgae have attracted much attention as a new bioreactor system for producing high-value heterologous proteins. In this paper, we investigated the expression of soybean Kunitz trypsin inhibitor gene SKTI in the chlorophyte Dunaliella salina. Using D. salina genomic DNA as template, the entire coding region of SKTI was amplified by PCR as a 654-bp DNA fragment. It had 100 % identity with the published sequence of SKTI. The entire SKTI fragment was cloned into the expression vector pCAM2201 at a site just downstream of 35S promoter of to yield pCAMSKTI. D. salina cells transfected with pCAMSKTI by means of the lithium acetate/polyethylene glycol-mediated method expressed a protein of 20.1 kDa as detected by anti-SKTI antibody. In addition, SDS-PAGE analysis of the cell extract also revealed an intense protein band indicative of the recombinant SKTI. SKTI was therefore successfully expressed in D. salina, and the expression could be detected for at least 35 generations.  相似文献   

14.
A highly efficient and synchronousin vitro tuberization system is described. One-node stem pieces from potato (Solanum tuberosum cv. Bintje) plants grown under short day-light conditions containing an axillary bud were cultured in the dark on a tuber-inducing medium. After 5 or 6 days all axillary buds started to develop tubers. To study gene expression during tuber development, RNA isolated from tuberizing axillary buds was used for bothin vitro translation and northern blot hybridizations. The genes encoding the proteinase inhibitors I and II (PI-I and PI-II), a Kunitz-and a Bowman-Birk-type proteinase inhibitor were already expressed in uninduced axillary buds. The length of the day-light conditions differently influenced the expression level of the individual genes. In addition, the expression of each of these genes changed specifically during the development of the axillary bud to tuber. In contrast to the expression of these proteinase inhibitor genes, patatin gene expression was only detectable from the day tuberization was manifested as a radial expansion of the axillary bud.These results are discussed with respect to the regulation of the expression of the genes studied in relation to the regulation of tuber development.  相似文献   

15.
16.
17.
18.
19.
20.
The Kunitz trypsin inhibitor (KTi) in soybean has several polymorphic types that are controlled by multiple alleles, which behave in a co-dominant fashion. Of these, Tia and Tib, which differ by nine amino acids, are the predominant types. In order to develop a single nucleotide amplified polymorphism (SNAP) marker for the classification of the predominant KTi types, Tia and Tib, and evaluate KTi activities by differing KTi type total 451 soybean mutant lines (M12–M16 generation) were incorporated in this study. Among 451 soybean mutants, 144 and 13 mutant lines showed decreased and increased trypsin inhibitor activity when compared with the original cultivars, respectively. To identify the KTi type, we designed a SNAP marker. Among 451 mutant lines from 12 soybean cultivars and landraces, 8 mutant lines derived from cvs. Baekwoon, Paldal and Suwon115 showed a change in KTi type when compared with the original cultivars using the SNAP marker. Five mutant lines in Suwon115 changed from Tib to Tia, while two mutant lines derived from cv. Baekwoon and one mutant line derived from cv. Paldal were changed from Tia to Tib. These changes of KTi types were confirmed by sequencing of the KTi genes and non-denaturing polyacrylamide gel electrophoresis of the KTi proteins. To identify the effect of KTi activity based on the change in KTi type, we measured the KTi activity using the three cultivars and eight mutant lines that showed changes in KTi type. Two mutant lines (BW-1 and 7-2) derived from cv. Baekwoon and one mutant line (PD-5-10) from cv. Paldal that changed from Tia to Tib showed lower activity than the original cultivar. In cv. Suwon115, five mutant lines that changed from Tib to Tia showed higher activity than the original cultivar. These results indicate that the designed SNAP marker was capable of identifying the KTi type and that Tia activity was higher than Tib activity in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号