首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerase (topo) I plays an important role in DNA metabolism by relieving the torsional restraints of DNA topology through ATP-independent single-strand DNA breakage. In the present study, we expressed human topo I in HeLa cells by fusing it to enhanced green fluorescent protein (EGFP). The EGFP-topo I fusion protein is functionally active in that it relaxes supercoiled plasmid DNA; forms complexes with DNA, as revealed by band depletion assays; and increases the sensitivity of cells to topo I inhibitors such as topotecan, as determined by growth inhibition assays. In contrast, a mutant form of the EGFP-topo I fusion protein, in which the active Tyr has been replaced by Phe (Y723F), has no such activities. Furthermore, the fusion protein localizes to the nucleus at interphase and completely associates with chromatids at every stage of mitosis. Of importance, the mutant fusion protein (Y723F) displays a pattern of subcellular localization identical to that of the wild-type fusion protein, although the mutant fusion protein is catalytically inactive. These results suggest that in addition to its role in DNA metabolism, topo I might also play a structural role in chromosomal organization; moreover, the association of topo I with chromosomal DNA is independent of its catalytic activity. Finally, the fusion constructs may provide a useful tool to study drug action in tumor cells, as demonstrated by nucleolar delocalization of the fusion proteins in response to treatment with the topo I inhibitor topotecan.  相似文献   

2.
Mammalian topoisomerase IIalpha (topo IIalpha) plays a vital role in the removal of topological complexities left on DNA during S phase. Here, we developed a new assay to selectively identify sites of catalytic activity of topo IIalpha with subcellular resolution. We show that topo IIalpha activity concentrates at replicating heterochromatin in late S in a replication-dependent manner and at centric heterochromatin during G2 and M phases. Inhibitor studies indicate that this cell cycle-dependent concentration over heterochromatin is sensitive to chromatin structure. We further show that catalytically active topo IIalpha concentrates along the longitudinal axis of mitotic chromosomes. Finally, we found that catalytically inert forms of the enzyme localize predominantly to splicing speckles in a dynamic manner and that this pool is differentially sensitive to changes in the activities of topo IIalpha itself and RNA polymerase II. Together, our data implicate several previously unsuspected activities in the partitioning of the enzyme between sites of activity and putative depots.  相似文献   

3.
4.
5.
DNA topoisomerase II (topo II) is the target of many anticancer drugs and is often altered in drug-resistant cell lines. In some tumor cell lines truncated isoforms of topo IIalpha are localized to the cytoplasm. To study the localization and function of individual enzyme domains, we have epitope-tagged several fragments of human topo IIalpha and expressed them by retroviral infection of rodent and human cells. We find that fusion of the topo II fragments to the hydrophobic tail of human liver cytochrome b5 anchors the fusion protein to the outer face of cytoplasmic membranes, as determined by colocalization with calnexin and selective detergent permeabilization. Moreover, whereas the minimal ATPase domain (aa 1-266) is weakly and diffusely expressed, addition of the cytb5 anchor (1-266-b5) increases its steady-state level 16-fold with no apparent toxicity. Similar results are obtained with the complete ATPase domain (aa 1-426). A C-terminal domain (aa 1030-1504) of human topo IIalpha containing an intact dimerization motif is stably expressed and accumulates in the nucleus. Fusion to the cytb5 anchor counteracts the nuclear localization signal and relocalizes the protein to cytoplasmic membranes. In conclusion, we describe a technique that stabilizes and targets retrovirally expressed proteins such that they are exposed on the cytoplasmic surface of cellular membranes. This approach may be of general use for regulating the nuclear accumulation of drugs or proteins in living cells.  相似文献   

6.
In this study we have investigated the role of topoisomerase (topo) IIalpha trafficking in cellular drug resistance. To accomplish this, it was necessary to separate the influence of cell cycle, drug uptake, topo protein levels, and enzyme trafficking on drug sensitivity. Thus, we developed a cell model (called accelerated plateau) using human myeloma H929 cells that reproducibly translocates topo IIalpha to the cytoplasm. Compared to log-phase cells, the cytoplasmic redistribution of topo IIalpha in plateau-phase cells correlated with a 10-fold resistance to VP-16 and a 40-60% reduction in the number of drug-induced double-strand DNA breaks. In addition, 7-fold more VP-16 was necessary to achieve 50% topo IIalpha band depletion, suggesting that there are fewer drug-induced topo-DNA complexes formed in quiescent cells than in log-phase cells. The total cellular amount of topo IIalpha and topo IIbeta protein in log- and plateau-phase cells was similar as determined by Western blot analysis. There was a 25% reduction in S-phase cell number in plateau cells (determined by bromodeoxyuridine (BrdU) incorporation), while there was no significant difference in the equilibrium concentrations of [(3)H]-VP-16 when log cells were compared with plateau cells. Furthermore, the nuclear/cytoplasmic ratio of topo IIalpha is increased 58-fold in accelerated-plateau H929 cells treated with leptomycin B (LMB) when compared to untreated cells. It appears that the nuclear-cytoplasmic shuttling of topo IIalpha, which decreases the amount of nuclear target enzyme, is a major mechanism of drug resistance to topo II inhibitors in plateau-phase myeloma cells.  相似文献   

7.
The cell cycle, oncogenic signaling, and topoisomerase (topo) IIalpha levels all influence sensitivity to anti-topo II drugs. Because the cell cycle and oncogenic signaling influence each other as well as topo IIalpha levels, it is difficult to assess the importance of any one of these factors independently of the others during drug treatment. Such information, however, is vital to an understanding of the cellular basis of drug toxicity. We, therefore, developed a series of analytical procedures to individually assess the role of each of these factors during treatment with the anti-topo II drug etoposide. All studies were performed with asynchronously proliferating cultures by the use of time-lapse and quantitative fluorescence staining procedures. To our surprise, we found that neither oncogene action nor the cell cycle altered topo IIalpha protein levels in actively cycling cells. Only a minor population of slowly cycling cells within these cultures responded to constitutively active oncogenes by elevating topo IIalpha production. Thus, it was possible to study the effects of the cell cycle and oncogene action on drug-treated cells while topo IIalpha levels remained constant. Toxicity analyses were performed with two consecutive time-lapse observations separated by a brief drug treatment. The cell cycle phase was determined from the first observation, and cell fate was determined from the second. Cells were most sensitive to drug treatment from mid-S phase through G(2) phase, with G(1) phase cells nearly threefold less sensitive. In addition, the presence of an oncogenic src gene or microinjected Ras protein increased drug toxicity by approximately threefold in actively cycling cells and by at least this level in the small population of slowly cycling cells. We conclude that both cell cycle phase and oncogenic signaling influence drug toxicity independently of alterations in topo IIalpha levels.  相似文献   

8.
9.
Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.  相似文献   

10.
11.
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.  相似文献   

12.
Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase IIalpha (topo IIalpha), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo IIalpha mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo IIalpha mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo IIalpha mRNA was significantly correlated with its immuno-staining index (p<0.0001, r=0.9077). Furthermore, it sharply detected that topo IIalpha mRNA decreased in growth-inhibited glioma cell. These results support that topo IIalpha mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors.  相似文献   

13.
14.
15.
DNA topoisomerases I and II (topo I and II) are nuclear enzymes involved in cellular replication and are targets for several anticancer drugs. We showed previously that E1A gene transfer enhanced the sensitivity of Ewing's sarcoma cells to the topo IIalpha targeting agents etoposide and Adriamycin in vitro and in vivo. To determine whether this effect was specific for topo IIalpha, we investigated the effect of E1A gene transfer on cell sensitivity to agents that target topo I and IIbeta. Transfecting TC71 human Ewing's sarcoma cells with an adenoviral vector containing the E1A gene enhanced their sensitivity to the topo IIalpha targeting agents etoposide (16-fold) and Adriamycin (8-fold). By contrast, E1A gene transfer did not affect cellular sensitivity to either amsacrine or camptothecin. Western blot analysis indicated that topo IIalpha protein levels increased 3.1-fold after E1A gene transfer, but topo I and IIbeta protein levels did not change. A plasmid containing topo IIalpha gene promoter with luciferase reporter gene was constructed to determine the effects of E1A gene transfer on the activity of the topo IIalpha promoter. E1A increased the activity of the topo IIalpha gene promoter by 3.5-fold relative to that of cells transfected with Ad-beta-gal. These results suggest that elevated topo IIalpha protein levels and enhanced sensitivity to topo IIalpha targeting agents were secondary to a direct effect of E1A on the topo IIalpha promoter. Combining E1A gene therapy with topo IIalpha targeting anticancer drugs may therefore have therapeutic benefit by increasing tumor cell sensitivity.  相似文献   

16.
The p53 tumor suppressor protein is a critical regulator of cell cycle progression and apoptosis following exposure of cells to DNA damaging agents such as ionizing radiation or anticancer drugs. An important group of anticancer drugs, including compounds such as etoposide and doxorubicin (Adriamycin), interacts with DNA topoisomerase II (topo II), causing the accumulation of enzyme-DNA adducts that ultimately lead to double-strand breaks and cell death via apoptosis. Human topo IIbeta has previously been shown to interact with p53, and we have extended this analysis to show that both topo IIalpha and IIbeta interact with p53 in vivo and in vitro. Furthermore, we show that the regulatory C-terminal basic region of p53 (residues 364-393) is necessary and sufficient for interaction with DNA topo II.  相似文献   

17.
DNA topoisomerase (topo) IIalpha, an essential enzyme for cell proliferation, is targeted to a proteasome-dependent degradation pathway when human tumor cells are glucose-starved. Here we show that the topo IIalpha destabilization depends on the newly identified domain, GRDD (glucose-regulated destruction domain), which was mapped to the N-terminal 70-170 amino acid sequence. Indeed, the deletion of GRDD conferred a stable feature on topo IIalpha, whereas the fusion of GRDD rendered green fluorescent protein unstable under glucose starvation conditions. Nuclear localization was a prerequisite for GRDD function, because the inhibition of nuclear translocation resulted in the suppression of GRDD-mediated topo IIalpha degradation. Further, GRDD was identified as an interactive domain for Jab1/CSN5, which promoted the degradation of topo IIalpha in a manner dependent on the MPN (Mpr1p/Prd1p N terminus) domain. Depleting Jab1/CSN5 by antisense oligonucleotide and treating cells with the CSN-associated kinase inhibitor, curcumin, inhibited topo IIalpha degradation induced by glucose starvation. These findings demonstrate that GRDD can act as a stress-activated degron for regulating topo IIalpha stability, possibly through interaction with the MPN domain of Jab1/CSN5.  相似文献   

18.
The plant flavonol fisetin is a common dietary component that has a variety of established biological effects, one of which is the inhibition of the enzyme DNA topoisomerase II (topo II). Compounds that inhibit topo II can exert genotoxic effects such as DNA double strand breaks, which can lead to the induction of kinetochore- or CREST-negative micronuclei. Despite reports that fisetin is an effective topoisomerase II inhibitor, its genotoxic effects have not yet been well characterized. Genotoxicity testing of fisetin was conducted in TK6 and HL60 cell lines and the cells were analyzed for malsegregating chromosomes as well as for the induction of micronuclei. Using the cytokinesis-blocked CREST micronucleus assay to discriminate between micronuclei formed from chromosomal breakage (CREST-negative) and chromosomal loss (CREST-positive), a statistically significant increase in CREST-positive micronuclei was seen for all doses tested in both cell lines. CREST-negative micronuclei, however, were significantly increased at the higher test concentrations in the TK6 cell line. These data indicate that at low concentrations fisetin is primarily exerting its genotoxic effects through chromosomal loss and that the induction of DNA breaks is a secondary effect occurring at higher doses. To confirm these results, the ability of fisetin to inhibit human topoisomerase II-alpha was verified in an isolated enzyme system as was its ability to interfere with chromosome segregation during the anaphase and telophase periods of the cell cycle. Fisetin was confirmed to be an effective topo II inhibitor. In addition, significant increases in the number of mis-segregating chromosomes were observed in fisetin-treated cells from both cell lines. We conclude that fisetin is an aneugen at low concentrations capable of interfering with proper chromosomal segregation and that it is also an effective topo II inhibitor, which exerts clastogenic effects at higher concentrations.  相似文献   

19.
Human topoisomerase II (topo II) is the cellular target for a number of widely used antitumor agents, such as etoposide (VP16). These agents ‘poison’ the enzyme and induce it to generate DNA breaks that are lethal to the cell. Topo II-targeted drugs show a limited sequence preference, triggering double-stranded breaks throughout the genome. Circumstantial evidence strongly suggests that some of these breaks induce chromosomal translocations that lead to specific types of leukaemia (called treatment-related or secondary leukaemia). Therefore, efforts are ongoing to decrease these secondary effects. An interesting option is to increase the sequence-specificity of topo II-targeted drugs by attaching them to triplex-forming oligonucleotides (TFO) that bind to DNA in a highly sequence-specific manner. Here five derivatives of VP16 were attached to TFOs. The active topo II poisons, once linked, induced cleavage 13–14 bp from the triplex end where the drug was attached. The use of triple-helical DNA structures offers an efficient strategy for targeting topo II-mediated cleavage to DNA specific sequences. Finally, drug–TFO conjugates are useful tools to investigate the mechanistic details of topo II poisoning.  相似文献   

20.
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号