首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of cystathionine was measured in 35 rat brains; the range was 10–120 nmol/g wet weight and thus the variability of cystathionine content in rat brain was emphasized. The regional distribution of cystathionine was also determined: the highest level was found in cerebellum; the lowest level was observed in the white and gray matter of the hemispheres. These results are different from those obtained in other species. The radioactive metabolites formed froml-[35S]cystathionine injected intracisternally were measured in brains of rats killed at the following times after injection: 0.25, 1, 2, 4, 6, 9, 16, and 27 hr. The radioactivity was found both in the proteins and in the acid-soluble fraction. In the acid-soluble fraction the radioactivity was found in various ninhydrin-reacting compounds: (cysteic + cysteine sulfinic) acid, taurine, reduced and oxidized glutathione, cystine, cystathionine, and a compound tentatively identified as the mixed disulfide of cysteine and glutathione. The radioactivity of cystathionine decreased exponentially between the 1st and the 27th hour after injection and its half-life was estimated to be about 5 hr. The radioactivity in the other ninhydrin-reacting compounds increased until the 9th hour after injection, then decreased. Half of this radioactivity was present in reduced glutathione, the rest being shared equally between: (cysteic + cysteine sulfinic) acid, taurine, and the mixed disulfide. It is worthwhile to note that the radioactivity in the cystine fraction was always very low.  相似文献   

2.
Metabolic changes in brain phosphoinositides with respect to post-decapitative ischemic treatment were examined with rats labeled after i.p. injection of 32Pi and intracerebral injection of [3H]inositol. The ischemic treatment resulted in a large and rapid decrease (40% in 2 min) in labeled polyphosphoinositide (poly-Pl), regardless of the source of the labeling. The rapid disappearance of poly-PI labeling can be similarly detected in the synaptosomes and plasma membrane fractions. On the other hand, the ischemic treatment resulted in an increase (10%) in [32P]-labeling of phosphatidylinositol, indicating possible contribution due to the poly-PI phosphomonoesterase pathway. In addition to the decrease in labeling of poly-PI, there was a decrease in radioactivity of phosphatidic acids in brain homogenates and plasma membranes due to the ischemic treatment. The labeling pattern of other phospholipids was not altered by the ischemic treatment. With rats prelabeled with [3H]inositol, the amount of labeled inositol monophosphate in brain increased 4-fold after pretreatment with LiCl (8 meq/kg). While no obvious change in labeling of inositol bisphosphate and inositol monophosphate was observed, there was a 40% decrease in labeled inositol trisphosphate after 2 min ischemic treatment. Discussions were made regarding the advantage and disadvantages in labeling brain phosphoinositides with these two types of labeled precursors.  相似文献   

3.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

4.
Developmental patterns and pharmacological and biochemical properties of taurine transport system were investigated using developing primary cultured neurons prepared from mouse cerebral cortex by trypsin treatment. [3H]Taurine was incorporated into neurons via a high-affinity transport system of which the Km value as well as the Vmax value increased during neuronal development in vitro. This transport system was also inhibited by sodium withdrawal from incubation medium and exposures for 15 h to several metabolic inhibitors such as 2,4-dinitrophenol and monoiodoacetate. In addition, [3H]taurine uptake in both neurons cultured for 3 and 14 days was competitively inhibited by beta-alanine, guanidinoethanesulfonate and hypotaurine. Cysteic acid and cysteine sulfinic acid, metabolic intermediates produced in the process of taurine biosynthesis in the brain from cysteine, induced significant reductions in [3H]taurine uptake in both types of cultured neurons, while cysteine, isethionic acid, cysteamine and cystamine exhibited no alterations in [3H]taurine transport. Moreover, non-competitive inhibition of [3H]taurine uptake by cysteic acid was observed in both neurons. These results clearly indicate that taurine uptake was mediated by the sodium- and energy-dependent transport system with high affinity in 14-day-old neurons as well as neurons cultured for 3 days and that both the Km and Vmax values of this transport system increase during neuronal development in vitro. The results described above suggest that the decrease in taurine content observed in developing brain is unlikely to be due to alteration in the capacity of the taurine transport system during neuronal development.  相似文献   

5.
Binding of l-[3H]cysteine sulfinic acid (CSA) and l-[3H]glutamate were compared in various subcellular fractions and in the presence of a variety of pharmacological and ionic manipulations in order to test the possibility that the two amino acids possessed separate binding sites.The specific l-[3H]cysteine sulfinate binding was found to be enriched maximally in medium and high density synaptic membranes, while the crude mitochondrial synaptosomal fraction displayed the highest l-[3H]glutamate binding. The ratio of l-[3H]cysteine sulfinate binding/l-[3H]glutamate binding was variable across brain regions. Several compounds differentially affected l-[3H]cysteine sulfinate and l-[3H]glutamate binding. l-cysteine sulfinate was the most potent displacer regardless of the binding considered. Finally, while cations produced qualitatively similar effects on the binding of the two amino acids, quantitative differences were evident.In sum, these data revealed the complexity of l-[3H]cysteine sulfinate and l-[3H]glutamate binding. They suggest the existence of several binding sites and that some of these are shared by both substances. However, the results also indicate that separate binding sites for the two amino acids exist in synaptic membrane, giving further support to the hypothesis that cysteine sulfinate serves a neurotransmitter role in the central nervous system.  相似文献   

6.
The release of l-[3H]cysteine sulfinic acid, l-[3H]glutamatic acid and [3H]GABA from preloaded slices of various rat brain regions in response to either 30 mM K+ or veratrin was investigated. All these aminoacids were released by both depolarizing agents, which did not produce any changes in the spontaneous efflux of [3H]lysine. The K+ stimulated cysteine sulfinate release from superfused slices was found partly Ca2+-dependent in the subiculum, and mainly Ca2+-independent in the hippocampus whereas the K+-elicited glutamate release was partly Ca2+-dependent in both regions. The veratrine-induced release of both cysteine sulfinate and glutamate was blocked by verapamil in a dose-dependent way, although a small verapamil concentration independent release remained. The release pattern of both amino acids was heterogeneous, but roughly correlated among brain regions, except in the subiculum and hypothalamus.These findings demonstrate the releasability of both substances from various brain regions and suggest that those releases occur from different pools, being probably mainly of neuronal origin. They give further evidence that cysteine sulfinate as well as glutamate may serve a neurotransmitter role in the CNS.  相似文献   

7.
Cystine catabolism in mycelia of Microsporum gypseum,a dermatophytic fungus   总被引:3,自引:0,他引:3  
The fate of 35S label was studied during cystine degradation by mycelia of the dermatophytic fungus Microsporum gypseum. Excess free cystine in the medium was readily taken up and its sulfur moiety excreted as inorganic sulfate and sulfite. At intervals after 3–60 min of incubation with 35S cystine the products of cystine catabolism were extracted from the mycelia by boiling water and separated by thin layer chromatography and electrophoresis. A total of 10 sulfur-containing compounds were identified, and their relative radioactivity was assessed. After 3 min the mycelia contained, in addition to cystine, labeled cysteine and particularly cysteine sulfinic acid which was accompanied by a smaller amount of cysteic acid. Later on, oxidized and reduced glutathione, inorganic sulfate and taurine appeared consecutively. In all extracts, small amounts of labeled S-sulfocysteine were found, not, however, sulfite.The results suggest that the intermediates of cysteine degradation in the fungal mycelia are cysteine, cysteine sulfinate, unstable sulfinylpyruvate, sulfite and sulfate, i.e., that the catabolic pattern is similar to that of higher organisms.The formation and the role of S-sulfocysteine, cysteic acid, and of taurine is not yet completely understood, although certainly autoxidative processes are involved in the formation of the latter two compounds, and sulfitolysis in that of the former compound.  相似文献   

8.
Rat brain minces were used to investigate the effects of nucleotides on the metabolism of arachidonic acid in nerve tissue. Brain free fatty acids, neutral lipids and phospholipids, were radiolabeled in vivo following intracerebral injection of [3H]arachidonic acid. Minces were prepared from the radiolabeled cerebra and were incubated in a modified Krebs-Ringer buffer with and without various nucleotides. The incubation-induced accumulation of unesterified [3H]arachidonate was reduced in the presence of CDPcholine, ATP, CTP, GTP, and UTP. These nucleotides inhibited choline and inositol glycerophospholipid hydrolysis. They also reduced the amount of labeled diglycerides. However, CDPethanolamine had no effect on arachidonic acid metabolism in the mince preparation and CMP appeared to stimulate further hydrolysis of choline glycerophospholipids, resulting in increased accumulation of [3H]arachidonic acid and labeled diglycerides. We suggest that the production of unesterified [3H]arachidonate and labeled diglycerides is due to the involvement of more than one catabolic reaction, since the high energy nucleotides had similar effects on fatty acid accumulation, but different effects on phospholipid labeling.  相似文献   

9.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

10.
Using either [32]ATP or [3H]inositol as precursors which were injected intraventricularly into rat brain, decapitative ischemic treatment resulted in a more rapid loss of labeled phosphatidylinositol 4,5-biphosphates than phosphatidylinositol 4-phosphates in the initial 30 s-1 min. When polyphosphoinositides were labeled with [3H]inositol, the breakdown of these compounds was accompanied by a time-dependent appearance of labeled inositol phosphates. Although the level of radioactivity of inositol trisphosphate was low, a peak labeling activity was shown at 30 s. The radioactivity of inositol bisphosphate showed an increase after a delay of 30 s, and reached a peak at 1 min before declining to the baseline level at 5 min. There was also a lag period of 30 s for the appearance of labeled inositol monophosphate, after which the radioactivity continued to increase in a biphasic manner for the entire 5 min period. Results indicate that decapitative ischemic treatment to rats can serve as an experimental model for assessing in vivo stimulation of the receptor-mediated signal transduction mechanism related to polyphosphoinositide breakdown and subsequent turnover of inositol phosphates in brain.  相似文献   

11.
LYSINE METABOLISM IN THE RAT BRAIN: THE PIPECOLIC ACID-FORMING PATHWAY   总被引:5,自引:4,他引:1  
Employing both the intraventricular and intraperitoneal injection techniques, 14C-l -lysine at non-overloading concentrations was found to be metabolized to l -14C-pipecolic acid at significantly high levels in the rat. Labeled pipecolic acid in the brain and liver was only found at rather low levels 24 h after intraperitoneal administration of 14C-l -lysine regardless of non-labeled lysine metabolite overload. A marked enhancement of pipecolic acid labeling was only found in the brain when 14C-l -lysine was intraventricularly administered to animals under various lysine metabolite overloads. While overloading doses of non-labeled saccharopine or α-aminoadipate did not significantly alter the labeling patterns of pipecolic acid in the brain, liver or urine when 14C-l -lysine was intraperitoneally administered, pipecolate overloading markedly reduced labeled pipecolic acid levels in the brain, liver and urine. These results indicate: pipecolic acid formation is subject to product inhibition, and saccharopine is not in the pathway of pipecolic acid synthesis from l -lysine. The labeling pattern of lysine metabolites was not significantly affected by the overloading injection of pipecolic acid when 14C-l -lysine was intraventricularly administered suggesting a blood-brain barrier for pipecolate. Besides 14C-pipecolic acid, labeled α-aminoadipic acid was also found at significant levels mostly in the brain. Labeled saccharopine was not detected in any tissues or urine samples analyzed. The 14C-l -lysine metabolic pattern of the newborn rats did not seem to be any different from the adult rats, i.e. labeled pipecolic acid was also detected in substantial quantities in the brain, liver and urine 5 h after injection. 14C-d -Lysine was mainly metabolized to l -14C-pipecolic acid through either route of administration. These experimental evidences indicate that the pipecolic acid-forming pathway is a significant route for lysine metabolism in the rat, and that the rat brain probably utilizes this pathway mainly for lysine metabolism. The present study also discusses the potential neurological significance of the pipecolic acid pathway in relation to the major lysine metabolic pathway (the saccharopine pathway).  相似文献   

12.
Abstract

We have attempted to convert 4 S uterine nuclear estrogen receptors obtained after in vitro labeling with [3H]antiestrogens to 3 S, the form observed after in vitro exchange with [3H]estradiol, in order to examine the possible relationship between these forms. Treatment of nuclear extracts labeled with the high affinity antiestrogen, [3H]4-hydroxytamoxifen, with a variety of nucleases, phosphatases, or proteases either had no effect on the 4 S antiestrogen-receptor complex or led to loss of ligand binding. The sulfhydryl reducing agents, cysteine or reduced glutathione, on the other hand, brought about conversion of 4 S estrogen receptors to components sedimenting at about 3 S. Conversely, when oxidized glutathione was included in all buffers used for preparation and labeling of nuclear estrogen receptors with [3H]estradiol, more rapidly sedimenting (?4.6 S) forms of estrogen-receptor complex predominated. Cysteine still effected the 4 S to 3 S conversion when nuclear estrogen receptors, partially purified by sucrose gradient centrifugation, were used as substrate, suggesting a direct action of the sulfhydryl reagents on receptor molecules. From these results we propose that nuclear estrogen and antiestrogen-receptor complexes may differ in conformation such that the former may be more sensitive to the action of an endogenous reducing agent which contributes to formation of 3 S [3H]estradiol-receptor complexes.  相似文献   

13.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   

14.
Abstract: The biosynthesis of tRNA was investigated in cultured astroglial cells and the 3-day-old rat brain in vivo. In the culture system astrocytes were grown for 19 days and were then exposed to [3H]guanosine for 1.5–7.5 h; 3-day-old rats were injected with [3H]guanosine and were killed 5–45 min later. [3H]tRNA was extracted, partially purified, and hydrolyzed to yield [3H]-guanine and [3H]methyl guanines. The latter were separated from the former by high performance liquid chromatography and their radioactivity determined as a function of the time of exposure to [3H]guanosine. The findings indicate that labeling of astrocyte tRNA continued for 7.5 h and was maximal, relative to total RNA labeling, at 3 h, while in the immature brain tRNAs were maximally labeled at 20 min after [3H]guanosine administration. The labeling pattern of the individual methyl guanines differed considerably between astrocyte and brain tRNAs. Thus, [3H]1-methylguanine represented up to 35% of the total [3H]methyl guanine radioactivity in astrocyte [3H]tRNA, while it became only negligibly labeled in brain [3H]tRNA. Conversely, brain [3H]tRNA contained more [3H]N2-methylguanine than did astrocyte [3H]tRNA. Approximately equal proportions of [3H]7-methylguanine were found in the [3H]tRNAs of both neural systems. The [3H]methylguanine composition of brain [3H]tRNA was followed through several stages of tRNA purification, including benzoylated DEAE-cellulose and reverse phase chromatography (RPC-5), and differences were found between the [3H]methylguanine composition of RPC-5 fractions containing, respectively, tRNAlys and tRNAphe. The overall results of this study suggest that developing brain cells biosynthesize their particular complement of tRNAs actively and in a cell-specific manner, as attested by the significant differences in the labeling rates of their methylated guanines. The notion is advanced that cell-specific tRNA modifications may be a prerequisite for the successful synthesis of cell-specific neural proteins.  相似文献   

15.
《Biomarkers》2013,18(2):107-114
Abstract

We have previously reported on the changes in urinary taurine levels in rats following treatment with some hepatotoxic agents and compounds reported to affect protein synthesis. This study follows the time course of the elevation of urinary taurine after treatment of rats with cycloheximide which was maximal 8–12 h alter dosing and was dose related. [3H]-leucine incorporation into proteins was used as an indicator of protein synthesis. There was a significant reduction in [3H]-leucine incorporation into acid precipitable proteins 8 h but not 24 h after dosing. The reduction in incorporation was negatively correlated with the raised levels of both serum and urinary taurine 8 h after dosing. Liver glutathione was raised both 8 and 24 h after dosing rats and liver taurine was significantly reduced at 8 h. It is suggested that measuring urinary taurine in collections made continuously might provide a simple, non-invasive biomarker for monitoring the effects of xenobiotics or other external stimuli on the status of protein synthesis.  相似文献   

16.
The use of radiolabeled nucleosides and nucleic acid bases to estimate the rates of RNA and DNA synthesis in naturally occurring microbial assemblages requires numerous assumptions, several of which are evaluated herein. Comparative time series analyses of the uptake and incorporation, labeling specificity, and extent of catabolism of [2-3H]adenine, [methyl-3H]thymidine, and [5-3H]uridine were performed with pure bacterial and algal cultures, as well as with environmental samples. [3H]thymidine yielded the most variable results, especially with regard to the extent of nonspecific macromolecular labeling. The pathways of [3H]thymidine and [3H]adenine metabolism were further evaluated by isotope dilution methods and by comparing incorporation patterns of thymidine labeled at different sites of the molecule. The advantages, uncertainties, and limitations of the use of radiolabeled nucleic acid precursors in studies of aquatic microbial ecology are discussed and a prospectus for future studies presented.  相似文献   

17.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

18.
Abstract: Cerebral taurine biosynthesis in a spontaneously hypertensive rat (SHR) has been studied. Cysteine sulfinic acid (CSA) and cysteic acid (CA), possible key intermediates in taurine biosynthesis, were found in the rat brain, whereas no cysteamine-cystamine was detected. In the brain of SHR, a statistically significant decrease in the contents of CSA, CA, and taurine was noted in the cerebellum, hypothalamus, and striatum as compared with normotensive Wistar Kyoto rats. Similarly, it was demonstrated that the activity of cysteine dioxygenase, the enzyme catalyzing cysteine to CSA, was attenuated significantly in the same brain areas of SHR. In contrast, no alteration in the activity of CSA decarboxylase, the enzyme converting CSA to hypotaurine or CA to taurine, was observed. A decline in the percent conversion of [14C]cysteine to [14C]taurine was found also in tissue homogenates from the cerebellum, hypothalamus, and striatum of SHR, indicating that the declines in taurine content may be due to an attenuation of taurine biosynthesis, possibly at the step involving cysteine dioxygenase.  相似文献   

19.
Yoshida ascites sarcoma-bearing rats excreted significantly higher quantities of deoxycytidine and pseudouridine in urine than normal rats, with a peak 5 days after transplantation of the tumor cells, and excretion of cytidine peaking 3 or 4 days later.The contribution by the injected [14C]orotic acid to labeling of urinary deoxycytidine was 32 and 3 times higher than that by [14C]uridine or [14C]cytidine, respectively. Urinary pseudouridine was also labeled 5–6 times greater by [14C]orotic acid than by [14C]uridine or [14C]cytidine. The labeling in pseudouridine was as high as that in deoxycytidine by either [14C]orotic acid or [14C]cytidine and was about 10 times higher by [14C]uridine. Neither [14C]uracil nor [3H]thymidine resulted in any labeling of either nucleoside. [6-3H]Uridine resulted in radioactivity of urinary pseudouridine, whereas [5-3H]uridine did not.The extent of labeling by the injected [14C]orotic acid of urinary deoxycytidine and pseudouridine was almost constant, at least for several days around maximal excretion of nucleosides; this was true for each injection made 1, 3 or 5 days after tumor transplantation.This study suggests that an increase of urinary deoxycytidine and pseudouridine could be derived from not only the tumor cells but also from the host liver and that urinary pseudouridine could be synthesized by rearranging the ribose in a uridine molecule, i.e., by transferring the ribose from the nitrogen 1 position of uracil to the carbon 5 position.  相似文献   

20.
Benzodiazepine receptors were labeled with [3H] diazepam following intravenous injection in rats. Binding of [3H] diazepam in vivo to rat forebrain membranes was displaceable by co-injection of clonazepam or the pharmacologically active enantiomers of two benzodiazepines, B9 and B10, but was not displaced by equal doses of the pharmacologically in-active enantiomers. Binding of [3H] diazepam invivo was bserved in kidney, liver, and abdominal muscle, but was not stereospecifically diplaced in any peripheral tissue studied. The regional distribution of benzodiazepine receptors in brain was uneven, with specific [3H] diazepam binding being highest in the cerebral cortex and lowest in the ponsmedulla. Preliminary studies of the subcellular distribution of [3H] diazepam binding demonstrated highest specific binding to synaptosomal membranes. These data demonstrate the feasibility of labeling benzodiazepine receptors in rat brain invivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号