首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors.  相似文献   

2.
Intracellular potassium ion (K+) in cultured human fibroblasts (HF cells) was maintained at reduced steady-state levels by incubating cells in various ouabain concentrations. Small decreases in cell K+ had no effect on protein synthesis and cell growth, but when cell K+ fell below 60–80% of control levels, the rate of protein synthesis decreased in proportion to further reductions in K+. DNA synthesis was also inhibited, presumably because of its dependence on protein synthesis. On the other hand, RNA synthesis remained uninhibited over a wide range of K+ concentrations, an effect characteristic of many specific inhibitors of protein synthesis.In ouabain-treated cells neither levels of ATP nor transport of amino acids was limiting for protein synthesis. Loss of activity of messenger or other species of RNA was not responsible for inhibition of protein synthesis, since in the presence of actinomycin D, the rate of protein synthesis could be decreased or increased solely by adjusting cell K+. Release from ouabain inhibition restored K+ levels, macromolecular synthesis, and cell growth, but there was no resulting synchrony of cell division. In cell populations partially synchronized by serum starvation and refeeding protein synthesis was sensitive to reduction in K+ levels throughout the cell cycle.Our quantitative results show that cell K+ levels, when sufficiently reduced, can determine the rate of protein synthesis and hence the rate of cell growth.  相似文献   

3.
Individual seed weight and seed growth rate are variable within the plant and among environmental conditions. Seed growth rate remains constant during the filling period even if assimilate availability is modified. This paper describes the relationship between the cotyledon cell number fixed at the beginning of seed filling and the seed growth rate. Two genotypes of pea were grown in various environmental conditions: field, glasshouse and growth chamber. One genotype of soybean was sown in field. Seed growth rate and cotyledon cell number were measured. Variations in seed growth rate (0.24 to 1.07 mg per degree-day for pea, 0.23 to 0.42 mg per degree-day for soybean) largely account for differences in individual seed weight. For each species, cotyledon cell number (from 3.4 x 105 to 10.2 x 105 per seed for pea, from 6.7 x 106 to 9 x 106 per seed for soybean) and seed growth rate are strongly correlated regardless of environmental conditions and intraplant position. Consequently, seed growth rate observed during the seed filling period is determined before this period during the cell division in the embryo: variations in seed growth rate depend on the growing conditions during the period between flowering and the beginning of seed filling.  相似文献   

4.
5.
Elongation growth rate of stem cells of Impatiens balsamina was inhibited by the heavy metals Pb2+, Cd2+ and Zn2+ due to their suppression on cell wall extensibility. Effective turgor was also inhibited by Pb2+ and Cd2+ but it played a secondary role in reducing the stem cell elongation growth rate. The major rate-limiting factor for cell elongation growth was the cell wall extensibility. Furthermore, Cd2+ was found to be more toxic than Pb2+, while Pb2+ was more toxic than Zn2+.  相似文献   

6.
Lowering of extracellular Ca2+ levels will reversibly arrest the growth of human fibroblasts (WI38). Simian virus40(SV40)-transformed WI38 cells do not exhibit this Ca2+-dependent arrest. One possibility for this difference in Ca2+ requirement is that extracellular or surface membrane-bound Ca2+ may be required for growth factor receptor-mediated endocytosis and this Ca2+ requirement may differ in normal versus transformed cells. In this study we have evaluated the role of Ca2+ in the binding, internalization, and degradation of epidermal growth factor (EGF) in the WI38 and SV40 WI38 cell. The binding of [125I]EGF to the cell surface is not significantly altered by lowering of Ca2+ to 10?5-M levels in either the normal or transformed cell. At this Ca2+ level, growth of the normal cell is inhibited. The subsequent internalization of EGF is reduced nearly threefold in the normal cell but not in the transformed cell following Ca2+ deprivation. Degradation of the EGF-receptor complex is also sensitive to Ca2+. A twofold reduction in the rate of release of acid-soluble 125I occurs in the normal but not the transformed cell under conditions of lowered medium Ca2+. In contrast, 2-chloro-10-3-aminopropyl phenothiazine (CP), an inhibitor of the Ca2+-dependent regulator protein calmodulin, causes an inhibition of [125I]EGF internalization and degradation in both the normal and transformed WI38 cell, and a marked inhibition of [125I]EGF binding to the cell surface receptor of the transformed cell but not the normal cell.  相似文献   

7.
Criteria are presented for distinguishing between synchronous and synchronized cultures (natural vs. forced synchrony) on the basis of characteristics of growth and division during a single generation. These criteria were applied in an examination of the uptake of potassium during the cell growth and division cycle in synchronous cultures and in a synchronized culture of Escherichia coli. In the synchronous cultures the uptake of 42K doubled synchronously with cell number, corresponding to a constant rate of uptake per cell throughout the cell cycle. In the synchronized culture, uptake rates also remained constant during most of the cycle, but rates doubled abruptly well within the cycle. This constancy of 42K uptake per cell supports an earlier interpretation for steady-state cultures that uptake is limited in each cell by a constant number of functional sites for binding, transport, or accumulation of compounds from the growth medium, and that the average number of such sites doubles late in each cell cycle. The abrupt doubling of the rate of uptake of potassium per cell in the synchronized culture appears because of partial uncoupling of cell division from activation or synthesis of these uptake sites.  相似文献   

8.
The effect of agitation rate and dissolved oxygen tension (DOT) on growth and gellan production by Sphingomonas paucimobilis was studied. Higher cell growth of 5.4 g l−1 was␣obtained at 700 rpm but maximum gellan (15 g l−1) was produced at 500 rpm. DOT levels above 20% had no effect on cell growth but gellan yield was increased to 23 g l−1 with increase in DOT level to 100%. Higher DOT levels improved the viscosity and molecular weight of the polymer with change in acetate and glycerate content of the polymer.  相似文献   

9.
There was a parallel alteration in [3H]ouabain binding and 86Rb+ uptake during the cell growth cycle in L5178Y murine lymphoblasts. The initial rate of Rb+ uptake and [3H]ouabain binding was highest at the stationary phase of the cell growth cycle. The possible relationship between changes in cation transport and membrane properties to the cell growth cycle is discussed.  相似文献   

10.
The DNA, RNA and protein content of the cyanobacterium Anacystis nidulans was determined in light-limited and carbon dioxide-limited chemostat cultures over the dilution rate range, D=0.02 h-1 to 0.19 h-1. The macromolecular contents as a percentage of the dry weight and on a per cell basis varied significantly as a function of organism growth rate and the nature of the growth conditions. For both limitations the RNA content per cell increased [20–55 fg RNA (cell)-1] with increasing dilution rate and also showed an increase as a percentage of the dry weight. The DNA content as a percentage of the dry weight showed a 2-fold decrease with increasing dilution rate over the range examined. On a per cell basis DNA reached a peak at D=0.1 h-1 [4.5 fg DNA (cell)-1] for light-limited organisms and at D=0.08 h-1 [8.0 fg DNA (cell)-1] for carbon dioxide-limited organisms. The q RNA increased with increasing dilution rates over the complete growth rate range examined whilst q DNA reached a maximum at D=0.09 to 0.10 h-1. The protein content as a percentage of the dry weight was greater in CO2-limited organisms than light-limited organisms but in both cultures declined as the dilution rate was increased above D=0.10 h-1.  相似文献   

11.
Pollen tube growth is localized at the apex and displays oscillatory dynamics. It is thought that a balance between intracellular turgor pressure (hydrostatic pressure, reflected by the cell volume) and cell wall loosening is a critical factor driving pollen tube growth. We previously demonstrated that water flows freely into and out of the pollen tube apical region dependent on the extracellular osmotic potential, that cell volume changes reflect changes in the intracellular pressure, and that cell volume changes differentially induce, increases or decreases in specific phospholipid signals. This article shows that manipulation of the extracellular osmotic potential rapidly induces modulations in pollen tube growth rate frequencies, demonstrating that changes in the intracellular pressure are sufficient to reset the pollen tube growth oscillator. This indicates a direct link between intracellular hydrostatic pressure and pollen tube growth. Altering hydrodynamic flow through the pollen tube by replacing extracellular H2O with 2H2O adversely affects both cell volume and growth rate oscillations and induces aberrant morphologies. Normal growth and cell morphology are rescued by replacing 2H2O with H2O. Further studies revealed that the cell volume oscillates in the pollen tube apical region. These cell volume oscillations were not from changes in cell shape at the tip and were detectable up to 30 μm distal to the tip (the longest length measured). Cell volume in the apical region oscillates with the same frequency as growth rate oscillations but surprisingly the cycles are phase-shifted by 180°. Raman microscopy yields evidence that hydrodynamic flow out of the apex may be part of the biomechanics that drive cellular expansion. The combined results suggest that hydrodynamic loading/unloading in the apical region induces cell volume oscillations and has a role in driving cell elongation and pollen tube growth.  相似文献   

12.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2eO3 to nutrient enriched artifical seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10-2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga and all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

13.
In this work as in previous studies from this laboratory it was demonstrated that the presence of a trace amount of NH4+ (72.8 μmol) stimulated the growth of Pau?s Scarlet Rose on a defined medium containing NO3? (1920 μmol) as the only other source of nitrogen. A kinetic analysis of several growth parameters showed that the rate of increase of dry weight, fresh weight, cell number, and cell volume were greater during early stages of growth (days 0–8) when NH4+ was provided. During later stages (days 8–14) this relationship between the two cultures did not hold. The cells provided NH4+ continued to increase in fresh weight and cell volume, but the cells which were not provided NH4+ had a greater rate of dry weight and cell number increase. These differences led to 14-day-old cultures which were approximately equal in dry weight and cell number but differed by a factor of 2 in fresh weight. The presence of NH4+ speeded up the development and growth of the cells.  相似文献   

14.
Kinetics of cell death and the production of dissolved organic carbon (DOC) were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown on three different N sources (N2nitrate, and ammonium) in a phosphorus (P)-limited chemostat. The fraction of live cells in the total population increased as growth rate increased with decreasing P limitation. Cell death was less in nitrate and ammonium media than in N2. The specific death rate (γ), when calculated as the slope ofv?1x vs. D?1, where vxand D are live cell fraction (or cell viability) and dilution rate, respectively, was 0. 0082 day?1 in N2and 0.0042 day?1 in nitrate. The slope of the plot in ammonium culture was not significant; however, the value of the live cell fraction was within the range for the NO?3culture. The fraction of live vegetative cells in N2 culture was constant at all growth rates and the increase in the overall live cell fraction with growth rate was due entirely to an increase in live heterocysts. Live heterocysts comprised 3.5% of the total cells at a growth rate of 0.25 day?1 and increased to 6.3% at 0.75 day?1 with the ratio of live heterocysts to live vegetative cells linearly increasing with growth rate. The fraction of live vegetative cells was invariant in nitrate cultures us in N2cultures. The live heterocysts fraction also increased with growth rate in nitrate cultures, along with the live heterocysts : live vegetative cells ratio, but the level was lower than in N2cultures. DOC released from dead cells increased inversely with growth rate in N2from 36.4% of the total DOC at a growth rate of 0.75 day?1 to 54.15% at 0.25 day?1. The contribution of cell death to the total DOC production in nitrate and ammonium media was significantly less than that under N2DOC from dead cells consisted mainly of high-molecular-weight compounds, whereas DOC excreted from live cells was largely of low molecular weight.  相似文献   

15.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

16.
With a chemostat culture, both the bacterial growth rate and the growth environment can be independently varied between wide limits. Changing the growth rate of Aerobacter aerogenes organisms (in either a glycerol-limited medium or a Mg2+-limited medium) affected the bacterial cell wall content; invariably slow growing organisms were smaller than faster growing ones and had a higher cell wall/biomass ratio. Changing the growth rate also influenced the composition of the walls but in this respect glycerol-limited organisms and Mg2+-limited organisms behaved differently. Thus, whereas increasing the growth rate of glycerol-limited cultures caused the cell wall 2-keto-3-deoxyoctonic acid (KDO) and heptose contents to increase progressively, with Mg2+-limited cultures they decreased. Furthermore, although KDO and heptose are both components of the lipopolysaccharide layer, their ratio varied with growth rate, and with the nature of the growth-limitation, indicating changes in the lipopolysaccharide composition. These results are discussed with particular reference to the influence of environment on cell wall content and composition, and the use of continuous culture for the production of bacterial vaccines.  相似文献   

17.
tRNA4lys is an isoaccepting tRNAlys which has been proposed as a necessary requirement for cell division in mammalian cells. We have measured the levels of this tRNAlys during the growth cycle of mouse 3T3 fibroblasts. High levels of tRNA4lys were seen throughout exponential growth. However, a marked decrease in tRNA4lys occurred 24 h before the cells became confluent. This decrease was observed in three different 3T3 cell lines, but was not seen in a transformed 3T3 cell line. Trypsinization and replating of contact-inhibited cells returned tRNA4lys to the levels characteristic of exponential cells. Data from these and other cell lines show a direct relationship between the levels of tRNA4lys and the growth rate of cells in culture.  相似文献   

18.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle.  相似文献   

19.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   

20.
Coccolithophorids are one of the dominant groups of marine phytoplankton. They are found in large numbers throughout the surface euphotic zone of the ocean, and are able to form large-scale blooms that persist for long periods of time. Coccolithophorid cells are covered by species-specific calcium carbonate crystals of various structures. In the process of calcification in coccolithophorids, Ca2+ is absorbed into cells from the culture medium, and a coccolith unit is formed inside the cell. Then, the coccolith unit extrudes to the cell surface where it is constructed into crystal layers. The formation of these crystals is regulated by cellular metabolism under different environmental conditions. The carbon biogeochemical cycle in the coccolithophorids involves both photosynthetic and calcification processes, which not only play an important role in population dynamics, but also in the global carbon cycle and climate change. However, one important question remains, namely, whether the relationship between photosynthesis and calcification is species-dependent. Previous studies have yielded controversial results, even in the same species. In this paper, we selected Pleurochrysis carterae, a coccolithophore species that frequently blooms in coastal areas, to study the relationship between calcification and photosynthesis. First, we studied population growth in a batch culture over several days. For batch cultures, P. carterae was inoculated into a 10 L bioreactor at an initial cell density of approximately 5 × 104 cells mL-1. The culture conditions were optimal for cell growth. Dissolved oxygen (DO) was detected during all the culture period, and the rate of photosynthetic oxygen evolution was calculated according the DO changes during the 12-h illumination period. Algal samples (10 mL) were collected during the population growth phases. The calcium carbonate content on the cell surface was determined each day by chemical titration. Next, we studied the relationship between photosynthesis and calcification at the cellular level by observing patterns of recalcification during a 12-h period. In this study, non-calcified cells were obtained by decalcifying calcified cells collected during the exponential growth period in MES-NaOH buffer solution (pH 5.5). The non-calcified cells were inoculated into culture media containing different concentrations of Ca2+ (0, 5, 20, 40, 50, or 100 mg L-1). The rate of recalcification was determined by microscopic analyses in which the number of recalcified cells per 100 cells was counted at 0, 3, 6, 9, and 12 h of culture. Ca2+ absorbed into the cell was detected by measuring the fluorescence intensity of Fluo-3/AM labeled Ca2+. The rate of photosynthetic oxygen evolution in the non-calcified cell cultures was detected by measuring the changes in dissolved oxygen during the 12-h illumination period. The results showed that during the population growth period, the rate of photosynthetic oxygen evolution was inversely related to the calcium carbonate content per cell. When the amount of calcium carbonate on the cell surface increased, the relative photosynthetic ability (the rate of photosynthetic oxygen evolution) decreased, and vice versa. Both recalcification rates and photosynthetic oxygen evolution were affected by the extracellular calcium concentration. Non-calcified cells showed different recalcification abilities at different extracellular Ca2+ concentrations. The recalcification rate of non-calcified cells was positively correlated with the extracellular calcium concentration when [Ca2+] in the medium ranged from 0 to 100 mg L-1. However, photosynthetic oxygen evolution was suppressed at higher cell calcification rates, especially when extracellular [Ca2+] was 50–100 mg L-1. Our analyses of the population growth process and the cell recalcification process confirmed that photosynthesis is inversely related to calcification in P. carterae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号