首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The juvenile hormone binding protein (JHBP) from Galleria mellonella hemolymph is a glycoprotein composed of 225 amino acid residues. It contains four Cys residues forming two disulfide bridges. In this study, the topography of the disulfide bonds as well as the site of glycan attachment in the JHBP molecule from G. mellonella was determined, using electrospray mass spectrometry. The MS analysis was performed on tryptic digests of JHBP. Our results show that the disulfide bridges link Cys10 and Cys17, and Cys151 and Cys195. Of the two potential N-glycosylation sites in JHBP, Asn4, and Asn94, only Asn94 is glycosylated. This site of glycosylation is also found in the fully biologically active recombinant JHBP expressed in the yeast Pichia pastoris.  相似文献   

2.
《Insect Biochemistry》1990,20(8):801-807
A novel two-step procedure has been developed for the purification of juvenile hormone binding proteins (JHBP) from caterpillars. Crude hemolymph was photoaffinity labeled with [3H]EHDA, a JH II analog. After removal of excess ligand, 40 ml of buffer-diluted hemolymph containing over 200 mg protein was submitted to preparative isoelectric focusing (IEF) using a Rotofor device. After removal of ampholytes by dialysis, the 3H-labeled fractions were purified to > 95% homogeneity by anion-exchange HPLC. Over 1000-fold purification could be achieved in a few days on a scale which provides 100–1000 μg of purified JHBP. Proteins thus obtained can be used for proteolytic digestion or can be sequenced after electroblotting from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel onto a polyvinylidene fluoride (PVDF) membrane. This protocol is illustrated for the purification and N-terminal amino acid sequencing of a hemolymph JHBP from an arctiid wooly bear caterpillar, Platyprepia virginalis.  相似文献   

3.
Several lines of evidence provided by other workers indicate that within the same species thyroid hormone binding protein, the beta-subunit of prolyl hydroxylase, and protein disulfide isomerase are the same protein. We sought to determine if glycosylation site binding protein, a lumenal protein of the endoplasmic reticulum, also has the same primary structure. To accomplish this the level of glycosylation site binding protein (GSBP) activity, measured by photolabeling with a glycosylation site peptide probe, was carried out in preparations of 3T3 cells and in E. coli transformed with human thyroid hormone binding protein cDNA. The results strongly support the idea that GSBP is identical to these other lumenal proteins of the endoplasmic reticulum.  相似文献   

4.
Juvenile hormone (JH) regulates insect development. JH present in the hemolymph is bound to a specific glycoprotein, juvenile hormone binding protein (JHBP), which serves as a carrier to deploy the hormone to target tissues. In this report structural changes of JHBP from Galleria mellonella induced by guanidine hydrochloride have been investigated by a combination of size-exclusion chromatography, protein activity measurements, and spectroscopic methods. Molecules of JHBP change their conformation from a native state via two unstable intermediates to a denatured state. The first intermediate appears in a compact state, because it slightly changes its molecular size and preserves most of the JHBP secondary structure of the native state. Although the second intermediate also preserves a substantial part of the secondary structure, it undergoes a change into a noncompact state changing its Stokes radius from approximately 30 to 39 A. Refolding experiments showed that JHBP molecules recover their full protein structure, as judged from the CD spectrum, fluorescence experiments, and JH binding activity measurements. The free energy of unfolding in the absence of the denaturant, DeltaG(D-N), is calculated to be 4.1 kcal mol(-1).  相似文献   

5.
《Insect Biochemistry》1989,19(3):327-335
The juvenile hormone binding protein (JHBP) from the cytosol of Drosophila melanogaster Kc cells has been purified with the use of a juvenile hormone photoaffinity analog, 10,11-epoxy (2E, 6E) farnesyl diazoacetate (EFDA). The purification procedure consists of five chromatographic steps and the end product of the purification procedure showed homogeneity by means of both native and SDS polyacrylamide gel electrophoresis. Furthermore, using a racemic mixture of the natural hormone, [3H]juvenile hormone III (JH III), as the radioligand in this purification procedure, we demonstrate that the purified protein is likely the authentic intracellular JHBP.  相似文献   

6.
Summary The juvenile hormone esterase (JHE) and juvenile hormone binding protein (JHBP) activities from the last larval instar of 14 species of Lepidoptera (Pieris rapae, Colias eurytheme, Danaus plexippus, Junonia coenia, Hemileuca nevadensis, Pectinophora gossypiella, Spodoptera exigua, Trichoplusia ni, Heliothis virescens, Orygia vetusta, Ephestia elutella, Galleria mellonella, Manduca sexta andEstigmene acrea) were analyzed by analytical isoelectric focusing (IEF). While the multiplicity and isoelectric point of these proteins varied, all of them were mildly acidic (pI 4.0–7.0), and a large number of the species possessed only a single JHE and/or JHBP activity. The Michaelis constants (K m's) of the whole hemolymph JHE activities from selected species for JH III were in the range of 10–7M. The equilibrium dissociation constantK d of the JHBP was determined by Scatchard analysis for selected species as well, with the majority of species having aK d near 10–7M. This information is consistent with JHE acting as a scavenger for JH at various times during development and relying entirely on mass action to remove JH from its protective JHBP complexes. The JHBP should limit nonspecific binding and thus facilitate the rapid transport of the intact hormone through-out the hemocoel. These data indicate that the species currently used in the study of the developmental biology of the Lepidoptera are biochemically similar to a variety of other species in this order.Abbreviations JH juvenile hormone - JHE juvenile hormone esterase - JHBP juvenile hormone binding protein - IEF isoelectric focusing - EPPAT O-ethyl-S-phenyl phosphoramidothiolate - DFP O O-diisopropyl phosphofluoridate  相似文献   

7.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   

8.
Summary At the end of blastokinesis, serosal epitheliae of 4- to 5-day-old embryos of Locusta migratoria contain an immunohistologically detectable cytosolic protein (Mr 240 kDa) which is related to the juvenile hormone carrier-protein in the haemolymph of the same species and which binds tritiated juvenile hormone 3 (JH3) (Kd10–8 M). At this early stage of development the corpora allata of the embryo are not yet fully differentiated and do not synthesize JH3 in organ cultures. The earliest detectable JH3 production by corpora allata in isolated heads is on day 6. On the other hand, serosal epitheliae of 4- to 5-day-old embryos produce JH3 in organ cultures, as has been shown by methylation of (10-3H)-JH3-acid to (10-3H)-JH3, and by incorporation of tritiated CH3 from l-(methyl-3H)-methionine into JH3. Isolated heads and abdomens of the embryos used as donors for the serosal preparations did not show methyl transferase activity responsible for JH3 biosynthesis. The serosal cells represent a hitherto unrecognized source of methyl transferase activity and of JH3 production. Degradation of JH3 to JH3-acid was also observed.Dedicated to Professor Herbert Röller on the occasion of his 60th birthday  相似文献   

9.
Juvenile hormone (JH) is essential for multiple physiological processes: it controls larval development, metamorphosis and adult reproduction. In insect hemolymph more than 99 % of JH is bound to juvenile hormone binding protein (JHBP), which protects JH from degradation by nonspecific hydrolases and serves as a carrier to supply the hormone to the target tissues. In Galleria mellonella hemolymph, JHBP is found in a complex with lipid-binding high molecular weight proteins (HMWP) and this interaction is enhanced in the presence of JH. In this report, we present studies on the interaction of JHBP with low molecular weight proteins (LMWP) in the hemolymph. Using ligand blotting we found that JHBP interacts with a protein of about 44 kDa. To identify the protein that preferentially binds JHBP, a LMWP fraction was applied to a Sepharose-bound JHBP and, after washing, the column was eluted with free JHBP acting as a specific competitor or with carbonic anhydrase as a negative control. The eluted proteins were separated by SDS/PAGE and analyzed by mass spectrometry. Isocitrate dehydrogenase was identified as a component of the supramolecular complex of JHBP with hemolymph proteins.  相似文献   

10.
The juvenile hormones (JHs) regulate a diverse array of insect developmental and reproductive processes. One molecular target of JH action is its transporter, hemolymph JH binding protein (hJHBP); in the larva of the tobacco hornworm, Manduca sexta, low doses of JH can immediately increase hJHBP gene expression. Less explored are the effects of JH on embryological development, where early hormonal treatment has been shown to affect embryonic development and pupation. This study examines the egg form of JHBP and its gene expression during embryogenesis of M. sexta, as well as the phenotypic effect JH treatment has on embryos and on JHBP gene expression. We here demonstrate that the preponderance of JHBP found in the egg is maternally derived and that the embryonic gene and protein appear identical to those found in the larva. Expression of the JHBP gene begins in both the embryo itself and extra-embryonic tissues 15 h after fertilization, long before emergence of a functional fat body and circulatory system. Topical application of low JH doses to early embryos resulted in larval abnormalities while high doses of the hormone induced embryonic mortality. These effects are not mediated through regulation of the JHBP gene, since embryonic expression appears invariant in response to JH challenge. The toxicity of JH is tightly correlated with the concentration of unbound hormone.  相似文献   

11.
12.
A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.  相似文献   

13.
Myosin binding protein C (MyBPC) is a multidomain protein associated with the thick filaments of striated muscle. Although both structural and regulatory roles have been proposed for MyBPC, its interactions with other sarcomeric proteins remain obscure. The current study was designed to examine the actin-binding properties of MyBPC and to define MyBPC domain regions involved in actin interaction. Here, we have expressed full-length mouse cardiac MyBPC (cMyBPC) in a baculovirus system and shown that purified cMyBPC binds actin filaments with an affinity of 4.3 ± 1.1 μM and a 1:1 molar ratio with regard to an actin protomer. The actin binding by cMyBPC is independent of protein phosphorylation status and is not significantly affected by the presence of tropomyosin and troponin on the actin filament. In addition, cMyBPC-actin interaction is not modulated by calmodulin. To determine the region of cMyBPC that is responsible for its interaction with actin, we have expressed and characterized five recombinant proteins encoding fragments of the cMyBPC sequence. Recombinant N-terminal fragments such as C0-C1, C0-C4, and C0-C5 cosediment with actin in a linear, nonsaturable manner. At the same time, MyBPC fragments lacking either the C0-C1 or C0-C4 region bind F-actin with essentially the same properties as full-length protein. Together, our results indicate that cMyBPC interacts with actin via a single, moderate affinity site localized to the C-terminal region of the protein. In contrast, certain basic regions of the N-terminal domains of MyBPC may act as small polycations and therefore bind actin via nonspecific electrostatic interactions.  相似文献   

14.
We previously reported the identification of a putative juvenile hormone esterase (JHE) binding protein DmP29 in Drosophila melanogaster and its primary localization to the mitochondria [Liu, Z., Ho, L., Bonning, B.C., 2007. Localization of a Drosophila melanogaster homolog of the putative juvenile hormone esterase binding protein of Manduca sexta. Insect Biochem. Mol. Biol. 37(2), 155-163]. To further characterize DmP29, we identified potential ligands of this protein. Recombinant DmP29 was shown by ligand blot and co-immunoprecipitation analyses to bind recombinant JHE as well as to larval serum proteins (LSP). The possible biological relevance of the in vitro DmP29-JHE interaction is provided by detection of JHE activity in D. melanogaster mitochondrial fractions; 0.48 nmol JH hydrolyzed/min/mg mitochondrial protein, 97% of which was inhibited by the JHE-specific inhibitor OTFP. However, the DmP29-LSP interactions may not be biologically relevant. Given the high abundance, and "sticky" nature of these proteins, interaction of DmP29 with LSP may result from non-specific associations. No DmP29 interactions with non-specific esterases were detected by co-immunoprecipitation analyses. The potential role of DmP29 as a chaperone of JHE is discussed.  相似文献   

15.
Recognition of protein-DNA binding sites in genomic sequences is a crucial step for discovering biological functions of genomic sequences. Explosive growth in availability of sequence information has resulted in a demand for binding site detection methods with high specificity. The motivation of the work presented here is to address this demand by a systematic approach based on Maximum Likelihood Estimation. A general framework is developed in which a large class of binding site detection methods can be described in a uniform and consistent way. Protein-DNA binding is determined by binding energy, which is an approximately linear function within the space of sequence words. All matrix based binding word detectors can be regarded as different linear classifiers which attempt to estimate the linear separation implied by the binding energy function. The standard approaches of consensus sequences and profile matrices are described using this framework. A maximum likelihood approach for determining this linear separation leads to a novel matrix type, called the binding matrix. The binding matrix is the most specific matrix based classifier which is consistent with the input set of known binding words. It achieves significant improvements in specificity compared to other matrices. This is demonstrated using 95 sets of experimentally determined binding words provided by the TRANSFAC database.  相似文献   

16.
ABSTRACT. Tritiated 10,11-epoxyfarnesyl diazoacetate (EFDA), a photoaffinity label, can be covalently attached to the binding site of a JH-III-specific binding protein in the haemolymph of Locusta migratoria migratorioides (R & F). The specificity of the binding of EFDA to the binding protein is verified by displacement with excess unlabelled JH-III, and EFDA can be used to identify the binding protein in native pore-limiting gradient poly(acrylamide) gel electrophoresis (PAGE) and sodium dodecyl sulphate-PAGE. The native binding protein has a molecular weight of 575,000 and is composed of seemingly identical subunits of molecular weight 81,000.
Three other high-molecular weight serum proteins are identified by native PAGE: a lipophorin, composed of two kinds of apolipophorins, a larval storage protein and a cyanoprotein. The molecular weights and subunit structures of these proteins are investigated, but none of these other high-molecular weight proteins bind JH-III to an appreciable extent.  相似文献   

17.
Odorant binding proteins (OBPs) are required for olfaction perception, and thus may be possible targets for controlling the population of pests by interfering with their chemical communication. A single OBP LmigOBP1 has been identified in the antennae of Locusta migratoria, though four isoforms have been detected. Here, we have investigated the ligand-binding specificity of LmigOBP1 using 67 volatile odor compounds. Fluorescence assays indicate that LmigOBP1 does not bind fecal volatiles or green leaf odors, but shows high affinity for some linear aliphatic compounds, with pentadecanol and 2-pentadecanone being the strongest binding ligands. A 3-dimensional (3D) model of LmigOBP1 was built by homology modeling. Docking simulations based on this model suggested that Asn74 of LmigOBP1 is a key binding site, and this was validated by site-directed mutagenesis and fluorescence assays. We suggest that, as a general rule, a hydrophilic amino acid at the entrance of the binding cavity participates in initial recognition of ligands, and contributes to ligand-binding specificity of OBPs.  相似文献   

18.
The juvenile hormones (JHs) regulate a diverse array of insect developmental and reproductive processes. One molecular target of JH action is its transporter, hemolymph JH binding protein (hJHBP); in the larva of the tobacco hornworm, Manduca sexta, low doses of JH can immediately increase hJHBP gene expression. Less explored are the effects of JH on embryological development, where early hormonal treatment has been shown to affect embryonic development and pupation. This study examines the egg form of JHBP and its gene expression during embryogenesis of M. sexta, as well as the phenotypic effect JH treatment has on embryos and on JHBP gene expression. We here demonstrate that the preponderance of JHBP found in the egg is maternally derived and that the embryonic gene and protein appear identical to those found in the larva. Expression of the JHBP gene begins in both the embryo itself and extra-embryonic tissues 15 h after fertilization, long before emergence of a functional fat body and circulatory system. Topical application of low JH doses to early embryos resulted in larval abnormalities while high doses of the hormone induced embryonic mortality. These effects are not mediated through regulation of the JHBP gene, since embryonic expression appears invariant in response to JH challenge. The toxicity of JH is tightly correlated with the concentration of unbound hormone.  相似文献   

19.
20.
The photolabile peptide, L-methionyl-L-tyrosyl-p-azido-L-phenylalaninamide, was synthesized by solution methods. This peptide, as well as the analogous species containing tritiated methionine, were found to bind reversibly and specifically, in the dark, to bovine neurophysin II. The dissociation constant, stoichiometry, and pH-dependence of this noncovalent interaction are typical of those properties for hormone (oxytocin) and hormone-like ligand binding to neurophysin II. Under photolytic conditions, methionyl-tyrosyl-p-azidophenylalaninamide causes irreversible inhibition of the noncovalent ligand binding activity of neurophysin II. This inactivation was achieved to the extent of about 90%. Both the dark and light (photolytic) interactions of the photolabile peptide with neurophysin II indicate its reaction at the hormone binding site of the protein and thus its potential use to identify amino acid residues at this site by covalent photoaffinity labelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号