首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recycling of epidermal growth factor in A431 cells   总被引:3,自引:0,他引:3  
The fate of epidermal growth factor (EGF) after internalization by A431 cells was studied. First, cells containing 125I-EGF-receptor complexes in endosomes were obtained. Subsequent incubation of the cells at 37 degrees C resulted in the recycling of 125I-EGF from endosomes to the cell surface in the receptor-bound state and the gradual release of recycled ligand into the medium. The excess of unlabeled EGF blocked both rebinding and re-internalization of recycled 125I-EGF to produce enhanced accumulation of ligand in the medium. The rate of recycling was shown to be much higher than that of EGF degradation.  相似文献   

2.
The cell-attached version of patch-clamp technique was used to search for calcium permeable channels in human carcinoma A-431 cells. With 100 mM CaCl2 in pipette, the inward currents were recorded having the mean unitary conductance of 2.8 pS and the reversal potential (obtained by linear extrapolation) equal to +25.5 mV. Application of the epidermal growth factor (EGF) into the bath extracellular solution produced a transient increase in probability for these channels to be open. The effect developed with a delay of about 20 seconds to last thereafter for 36 seconds (mean values). We propose that these channels mediate EGF-induced increase in concentration of cytosolic free calcium.  相似文献   

3.
Dynamics of compartmentalization of epidermal growth factor (EGF) in human carcinoma A431 cells during the first hour after initiation of endocytosis was examined by methods of the organelle fractionation on a 20% Percoll gradient and of the microfluorimetric visualization of endocytosis of rhodamine-labeled EGF (EGF-R). EGF was revealed in small vesicles localized in the peripheral region of cytoplasm in a few minutes after endocytosis initiation. During centrifugation in Percoll these vesicles (endosomes), with an average density of 1.038 g/ml, were seen co-sedimented with Golgi membranes. By one hour after initiation of endocytosis, EGF-R was accumulated in perinuclear zone, in a trans-Golgi region, as numerous big luminous centres that were apparently MB-endosomes and had the same density in Percoll as did small peripheral endosomes. Such centres appeared in several cells already within 5-10 minutes. In A431 cells EGF did not reach lysosomes within 60 minutes, because no accumulation of 125I-EGF was shown in lysosome corresponding regions of Percoll gradient (average density 1.070 g/ml).  相似文献   

4.
S T Sawyer  S Cohen 《Biochemistry》1981,20(21):6280-6286
Epidermal growth factor (EGF) stimulates the incorporation of 32Pi and [3H]inositol into phosphatidylinositol (5-10-fold) in A-431 cells. EGF also stimulates the incorporation of 32Pi into phosphatidic acid (up to 10-fold). These effects are attributed to an acceleration of the turnover of phosphatidylinositol as a consequence of the binding of EGF to its membrane receptor. The extent of the phosphatidylinositol response to EGF parallels the extent of hormone binding. The phosphatidylinositol response to EGF appears to be dependent on an influx of calcium since (a) external calcium is required for the enhancement of phosphatidylinositol turnover, (2) the accumulation of 45Ca by A-431 cells is stimulated by EGF, (3) blockage of calcium influx with LaCl3 inhibits stimulation of phosphatidylinositol turnover, and (4) calcium influx via ionophore A23187 is sufficient to stimulate phosphatidylinositol turnover. Since the binding, internalization, and degradation of 125I-labeled EGF in A-431 cells are unaffected by the omission of calcium from the medium, external calcium and phosphatidylinositol turnover are not necessary for the internalization and degradation of the EGF-receptor complex.  相似文献   

5.
Biosynthesis of the epidermal growth factor receptor in A431 cells.   总被引:16,自引:6,他引:16       下载免费PDF全文
A monoclonal antibody R1 against the human epidermal growth factor receptor has been used to study biosynthesis in the carcinoma cell line A431. Two glycoproteins of apparent mol. wts. 95 000 and 160 000 were immunoprecipitated from cells labelled for short times with [35S]methionine or [3H]mannose. Pulse-chase studies show the 160 000 mol. wt. glycoprotein to be a precursor of the 175 000 mol. wt. receptor, but do not establish a precursor role for the 95 000 mol. wt. glycoprotein. Limited proteolysis, peptide mapping, endoglycosidase digestion and the use of monensin and tunicamycin show that the 95 000 mol. wt. glycoprotein is structurally related to the 160 000 mol. wt. glycoprotein and that both glycoproteins have approximately 22 000 - 28 000 mol. wt. of oligosaccharide side chains. Monensin blocks conversion of the 160 000 to the 175 000 mol. wt. mature receptor, a process which involves complexing several of its N-linked oligosaccharide chains. Pulse-chase studies showed that an immunoprecipitable polypeptide of 115 000 mol. wt., or 95 000 mol. wt., in the presence of monensin, was secreted into the medium at late chase times. The possible mechanisms for the origins of all the receptor-related polypeptides are discussed.  相似文献   

6.
Nitric oxide (NO*) strongly inhibits the proliferation of human A431 tumour cells. It also inhibits tyrosine phosphorylation of a 170-kDa band corresponding to the epidermal growth factor receptor (EGFR) and induces the phosphorylation at tyrosine residue(s) of a 58-kDa protein which we have denoted NOIPP-58 (nitric oxide-induced 58-kDa phosphoprotein). The NO*-induced phosphorylation of NOIPP-58 is strictly dependent on the presence of EGF. Phosphorylation of NOIPP-58 and inhibition of the phosphorylation of the band corresponding to EGFR are both cGMP-independent processes. We also demonstrate that the p38 mitogen-activated protein kinase (p38MAPK) pathway is activated by NO* in the absence and presence of EGF, whereas the activity of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and the c-Jun N-terminal kinase 1/2 (JNK1/2) pathways are not significantly affected or are slightly decreased, respectively, on addition of this agent. Moreover, we show that the p38MAPK inhibitor, SB202190, induces rapid vanadate/peroxovanadate-sensitive dephosphorylation of prephosphorylated EGFR and NOIPP-58. We propose that the dephosphorylation of both NOIPP-58 and EGFR are mediated by a p38MAPK-controlled phosphotyrosine-protein phosphatase (PYPP). Activation of the p38MAPK pathway during nitrosative stress probably prevents the operation of this PYPP, allowing NOIPP-58, and in part EGFR, to remain phosphorylated and therefore capable of generating signalling events.  相似文献   

7.
Regulation of protein breakdown by epidermal growth factor in A431 cells   总被引:1,自引:0,他引:1  
Addition of epidermal growth factor (EGF) to cultures of A431 human epidermoid carcinoma cells produces an increase in the rate of intracellular protein breakdown that cannot be accounted for by increased proteolysis in lysates from EGF-treated cells. In support of this observation, inhibition of protein synthesis with cycloheximide does not reduce the EGF response in cell monolayers. On the other hand, inhibitors of lysosomal proteolytic function such as leupeptin, vinblastine and especially the weak base, ammonia, are able to block the ability of EGF to increase protein breakdown. Additional results suggest that the EGF effect is mediated via a stimulation of autophagy. First, the autophagocytosis inhibitor, 3-methyladenine, reduces the EGF response, and second, the ability of insulin to inhibit protein breakdown by preventing the formation of autophagic vacuoles is overcome by EGF. Moreover, the actions of inhibitors and competing hormones are similar to those reported for glucagon, a hormone known to increase autophagy. The EGF response on protein breakdown persists for at least 6 h after thorough washing of the A431 monolayers. This result contrasts with the rapid reversal of EGF effects in other cell lines. Examination of the fate of bound EGF in cells washed and incubated for 2 h at 37 degrees C shows that some 500-fold more EGF per mg protein is retained on the surface of A431 cells compared to AG2804-transformed fibroblasts, a difference which probably explains the unusual persistence of the EGF effect on protein breakdown.  相似文献   

8.
9.
Capping of the EGF receptor (EGF-R) on the surface of suspended and adherent epidermoid carcinoma cells, A431, is studied. It was induced at 20 degrees C after treating cells with monoclonal antibody to the EGF receptor followed by the second antibody conjugated with FITC. Accumulation of cortical actin under the caps was detected by rhodamine-phalloidin. Destruction of the actin stress-fiber-like bundles was observed during incubation of cells with the ligands at 0 degrees C. Two processes appear to take place at 20 degrees C: redistribution of the EGF-R with cortical actin into the caps within 15-30 min and reconstruction of cytoplasmic actin bundles over 45-60 min. Dihydrocytochalasin B prevented cap formation in adherent cells, but small patches of EGF-R colocalized with actin aggregates under plasma membrane were observed. The function of different actin-containing cytoskeleton structures in the process of capping is discussed.  相似文献   

10.
Epidermal growth factor (EGF) is a well known mitogen, but it paradoxically induces apoptosis in cells that overexpress its receptor. We demonstrate for the first time that the EGF-induced apoptosis is accelerated if NF-kappaB is inactivated. To inactivate NF-kappaB, human epidermoid carcinoma cells (A431) that overexpress EGF receptor were stably transfected with an IkappaB-alpha double mutant construct. Under the NF-kappaB-inactivated condition, A431 cells were more sensitive to EGF with decreased cell viability and increased externalization of phosphatidylserine on the cell surface, DNA fragmentation, and activation of caspases (3 and 8 but not 9), typical features of apoptosis. These results were further supported by the potentiation of the growth inhibitory effects of EGF by chemical inhibitors of NF-kappaB (curcumin and sodium salicylate) and the protective role of RelA evidenced by the resistance of A431-RelA cells (stably transfected with RelA) to EGF-induced apoptosis. EGF treatment or ectopic expression of RelA in A431 cells induced DNA binding activity of NF-kappaB (p50 and RelA) and the expression of c-IAP1, a downstream target of NF-kappaB. A431-RelA cells exhibited spontaneous phosphorylation of Akt (a downstream target of phosphatidylinositol 3-kinase and regulator of NF-kappaB) and EGF treatment stimulated it further. Blocking this basal Akt phosphorylation with LY294002, an inhibitor of phosphatidylinositol 3-kinase, did not affect their viability but blocking of EGF-induced phosphorylation of Akt sensitized the otherwise resistant A431-RelA cells to EGF-mediated growth inhibition. Our results favor an anti-apoptotic role for NF-kappaB in the regulation of EGF-induced apoptosis.  相似文献   

11.
Transforming growth factor beta (TGF beta) alters the cellular response to epidermal growth factor (EGF) in a number of systems, but the underlying mechanisms for these alterations are largely unknown. We have examined second messenger formation in Rat-1 cells following treatment with EGF and/or TGF beta to determine whether the ability of TGF beta to potentiate some EGF-stimulated processes might be mediated by TGF beta-induced alterations in the signal transduction mechanism. Incubation of serum-deprived confluent Rat-1 cells with 10 ng/ml TGF beta resulted in a marked elevation of cellular inositol trisphosphate and inositol tetrakisphosphate levels, which were maximal at 4 h and maintained for at least 8 h. The effect of TGF beta on levels of inositol trisphosphate and inositol tetrakisphosphate was blocked by actinomycin D, suggesting that RNA synthesis was required for the TGF beta effect. While EGF stimulation induced a rapid and transient (5 min) rise in inositol phosphate levels in control cells, the EGF effect was considerably increased, both in magnitude and duration, by TGF beta treatment. Measurement of intracellular free Ca2+ with fura-2 demonstrated that TGF beta treatment markedly increased the EGF-stimulated rise in free Ca2+ and increased the duration of the response. The positive effects of TGF beta on EGF stimulation could not be explained on the basis of increased EGF binding to cells. We conclude that TGF beta treatment can both activate phosphatidylinositol turnover independently and also sensitize Rat-1 cells to stimulation by EGF.  相似文献   

12.
Using human-specific antibody reagents, we have examined the biosynthesis of the epidermal growth factor receptor in human epidermoid carcinoma-derived A431 cells. Four Mr species (Mr = 70,000, 95,000, 135,000, and 145,000) are detected when cells are subjected to a brief pulse of L-[35S]methionine; an Mr = 165,000 species is detected after 45-60 min of exposure of cells to radiolabel. In pulse-chase experiments, the four lower Mr species appear to bear a precursor relation to the Mr = 165,000 protein. The molecule acquires N-linked oligosaccharide cotranslationally, and two of the species (Mr = 95,000 and 145,000) are susceptible to digestion with endo-beta-N-acetylglucosaminidase H. The Mr = 145,000 and Mr = 165,000 proteins, which become labeled with 125I-epidermal growth factor after treatment of intact cells with a bifunctional cross-linking reagent, are phosphorylated at serine and threonine on identical tryptic peptides.  相似文献   

13.
Estradiol (E2) priming (1 nM for 48 h) of normal murine mammary gland epithelial cells significantly increased the response of those cells to epidermal growth factor (EGF)-induced DNA synthesis. The synergism between E2 and EGF was evident in two aspects: After serum-free synchronization for 24 h, more cells entered the S-phase of the cell cycle after E2 priming and when treated with 0.17 nM EGF (13%) than did control cells (1.3%) or cells treated with EGF (4%) or E2 (3.5%) alone; further, the dose of EGF required to elicit maximal response was reduced an order of magnitude in estrogen-primed cells (0.17 nM) compared to controls (1.7 mM). Estrogen alone, however, did not increase DNA synthesis in these cells. Ligand binding studies indicate that these effects of estrogen on proliferating mammary epithelial cells may be explained, at least in part, by a 3.7-fold increase in the number of high affinity EGF-receptors observed in estrogen primed cells (7,300 receptors per cell) compared to estrogen deprived cells (1,960 receptors/cell). © 1993 Wiley-Liss, Inc.  相似文献   

14.
15.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

16.
A rapid and simple method was developed for isolating denatured epidermal growth factor (EGF)-receptor suitable for use in preparation of polyclonal antisera. Membranes from A431 cells (which possess unusually high numbers of EGF-receptors) were phosphorylated in vitro with [gamma-32P]ATP and run on preparative sodium dodecyl sulfate (SDS)-polyacrylamide gels. The Mr 170,000 major phosphorylated region was excised from the gels, eluted, and protein chromatographed on SDS-hydroxylapatite. Fractions containing the Mr 170,000 tyrosine-phosphorylated protein were pooled, concentrated, and rerun on preparative SDS gels. The protein eluted from these gels was judged to be highly purified, based on peptide mapping and on comparison of proteins immunoprecipitated by monoclonal antibody against the EGF-receptor with proteins precipitated by polyclonal antibody prepared against the Mr 170,000 protein described here. The polyclonal antiserum recognized native and denatured EGF-receptor from human, rat, and mouse cells and should prove useful in studying EGF-receptor synthesis and function.  相似文献   

17.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-beta-cyclodextrin (mbetaCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mbetaCD also impaired directional migration of cells in an in vitro "wound healing" assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Czeta (PKCzeta) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

18.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-β-cyclodextrin (mβCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mβCD also impaired directional migration of cells in an in vitro “wound healing” assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Cζ (PKCζ) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

19.
Escherichia coli harboring the gene coding for human interleukin-2 (IL-2) produced methionyl IL-2 (Met-IL-2) having an additional methionine residue at the amino terminus as well as IL-2 starting with the amino terminal alanine. IL-2 and Met-IL-2 were copurified from a cell-free extract. It was difficult to separate these two molecular species from each other because of the similarities of their physico-chemical characteristics. We found that the isoelectric points of IL-2 and Met-IL-2 were slightly but significantly different and succeeded in separating these two molecular species by utilizing the difference of their isoelectric points. The isoelectric points of IL-2 and Met-IL-2 thus obtained were determined to be 7.7 and 7.5, respectively. The in vitro specific activities of these two species were the same and similar to that of natural human IL-2 derived from peripheral blood lymphocytes.  相似文献   

20.
The relation between the concentration of epidermal growth factor (EGF) receptor/kinase and effects of EGF on cell proliferation has been studied using variant A431 cells and antagonist anti-EGF receptor monoclonal antibodies. Clonal A431 cell variants selected for escape from the EGF-mediated growth inhibition of parental A431 cells all have reduced concentrations of EGF receptor/kinase; Harvey sarcoma virus-transformed A431 cells, which have escaped from EGF-mediated growth inhibition, also have reduced EGF receptors. Three clonal variants which have reacquired EGF-mediated growth inhibition have 2- to 4-fold more EGF receptor than their respective parent variant. A biphasic response with stimulation at low and inhibition at high concentrations of EGF was especially evident in revertants of clone 29. Three separate antagonist monoclonal anti-EGF receptor antibodies block the growth inhibitory effects of EGF and uncover EGF-mediated growth stimulation. These studies indicate that in A431 cell variants a continuum of ligand-activated EGF receptors determines proliferative responses from low concentrations of active receptors under basal conditions to intermediate concentrations causing growth stimulation to high concentrations, causing inhibition of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号